
 
 

Business Process Modeling 
 

as a means to bridge 
 

The Business-IT Divide 
 

 

Martin Devillers 
 

Master’s Thesis 

 

Information Sciences 
 

 

 

 

 

 

 
Radboud University Nijmegen 

 

 

Supervisors 

Dr. Stijn Hoppenbrouwers 

Hidde Andriessen 

Gert Jan Timmerman 

Thesis Number 156IK 

Martin Devillers 

Version 1.3 

Aug 2011 

  



ii 
 

 

“All models are wrong, some are useful” 
 

George E.P. Box 

 

 

 



iii 
 

Preface 

This Master’s thesis is the result of six months of research performed by me, Martin Devillers, as 

part of my internship at Info Support and my thesis for the Information Sciences Master of the 

Radboud University Nijmegen. 

I would like to extend a word of thanks to the various organizations and people who in some 

manner have made a contribution to my research. I would like to thank the following organizations: 

 Radboud University Nijmegen, for providing me with an adequate education, thus granting me 

with a vast amount of theoretical knowledge, which formed the bedrock of my research.  

 Info Support, for accepting me as an intern and providing the appropriate resources required by 

me to perform my research.  

I would like to thank three people for their involvement in my endeavors: 

 Stijn Hoppenbrouwers, my supervisor at the Radboud University Nijmegen, for his guidance 

during the research project. His insight into conceptual modeling and group model building 

helped me considerably in my research.  

 Hidde Andriessen, my principal at Info Support, for providing the original assignment and the 

case which instigated my research. Contrary to what I expected, Hidde was more interested in the 

theoretical subjects underlying his case, than an actual solution. This motivated me to take a 

highly theoretical and explorative approach towards my research. 

 Gert Jan Timmerman, my technical supervisor at Info Support, for his excellent feedback and 

the numerous hours we spent on discussions. His perspectives on language and knowledge 

management helped me considerably in my research. But perhaps more importantly, meeting 

Gert Jan has taught me that commercial organizations can too be a place for scientists.  

Lastly, I would like to reflect on the research process itself. Clearly, the focus of my attention with 

respect to the research topic shifted considerably over the six months. It would appear that as my 

knowledge of business process modeling and related topics expanded, the things I would write one 

day would seem wrong or irrelevant the next. Due to my perfectionist nature, I was not content to 

write anything I did not fully stand by nor did not entirely understand. As a result, I spent a 

significant time reading papers and writing text only to end up discarding my results. While at the 

time I found this lack of progress to be rather dissatisfying, I now realize that it was necessary and in 

all likelihood unavoidable. Although I do not intend to join the research community after I have 

finished my masters, I have gained an appreciation for the struggle scientists undergo in a  world 

where there is vastly more knowledge available than any man could ever comprehend. 



iv 
 

Abstract 

A great number of business process modeling endeavors aim to create representations of business 

processes which can be translated to computer software by IT stakeholders while remaining 

understandable to business stakeholders. However in practice, business process models rarely meet 

these high demands, leading either to models which are too informal to be interpreted by a 

computer or to models which are incomprehensible to business stakeholders. Our research attempts 

to assess why these problems occur and whether it is fundamentally feasible to create models that 

meet these demands.  

Although the topic of business process modeling has received great attention from the research 

community, most of this attention is focused on the formal aspects of these models , such as 

computer simulation or mathematical properties. In contrast, little research addresses the informal 

aspects of these models, such as their accuracy in representing the real world business processes 

they are based on. We argue that these informal aspects play a pivotal role in creating a shared 

understanding of business processes among business and IT stakeholders. 

We performed a two phase research in order to answer the question whether business process 

modeling can serve as a common language between business and IT stakeholders. The first phase is 

of a philosophical nature as it addresses a wide range of theories. These include the historic 

business-IT alignment problem, theories on language, conceptual modeling and generic system 

design principles. The second phase is of an empirical nature as it focuses on a case study of a real 

world BPM project. The study reveals a series of problems which we subsequently generalized using 

our theories gathered during the first phase. This allows us to not only produce a list of generic 

issues currently affecting BPM projects, but also to explain why these issues occur and how they can 

be avoided.  

Most notably, our research reveals how the different manner in which business and IT 

stakeholders create and interpret business process models can lead to misunderstandings. 

Additionally, our results show that the influence of the IT discipline on BPM actually inhibits the 

development of business friendly modeling languages. We argue that if BPM is to truly become a 

management discipline, the focus should be placed on the usability of process modeling for the 

business, rather than IT. 



v 
 

Table of Contents 

1 Introduction .......................................................................................................................................... 1 

2 Theoretical background ....................................................................................................................... 3 

2.1 Business process management ...................................................................................................... 3 

2.2 Business process modeling ........................................................................................................... 4 

2.2.1 Flowchart ................................................................................................................................ 4 

2.2.2 Petri net .................................................................................................................................. 5 

2.2.3 Unified Modeling Language .................................................................................................. 6 

2.2.4 Role Activity Diagrams .......................................................................................................... 7 

2.2.5 Event-driven Process Chains ................................................................................................. 8 

2.2.6 Integrated Definition for Functional Modeling .................................................................... 9 

2.2.7 Business Process Modeling Notation ................................................................................... 11 

2.3 Business-IT alignment ................................................................................................................. 13 

2.4 Language Theory .......................................................................................................................... 13 

2.4.1 Natural language ................................................................................................................... 13 

2.4.2 Artificial language ................................................................................................................. 14 

2.5 Conceptual Modeling ................................................................................................................... 14 

2.5.1 Ontological Expressivity ....................................................................................................... 14 

2.5.2 Functional Decomposition ................................................................................................... 15 

2.6 Abstraction ................................................................................................................................... 16 

2.7 System Design Principles ............................................................................................................. 16 

2.7.1 Modularity ............................................................................................................................. 16 

2.7.2 Separation of Concerns ......................................................................................................... 17 

2.7.3 Single Responsibility Principle ............................................................................................. 17 

2.7.4 Single Point of Entry ............................................................................................................. 18 

2.7.5 Ad-hoc Polymorphism .......................................................................................................... 18 

2.7.6 Information hiding ............................................................................................................... 19 

3 Fundamental topics ........................................................................................................................... 20 

3.1 Natural language versus formal language ................................................................................... 20 

3.1.1 Experience ............................................................................................................................ 20 

3.1.2 Syntax, Semantics & Pragmatics .......................................................................................... 20 

3.1.3 Purpose .................................................................................................................................. 21 

3.1.4 Expressiveness ..................................................................................................................... 22 

3.2 Ambiguity in languages............................................................................................................... 23 

3.3 Abstraction .................................................................................................................................. 24 

3.3.1 Leaky abstraction ................................................................................................................. 24 

3.3.2 Conceptual abstraction vs. Scoping abstraction ................................................................. 25 

3.4 Application of System Design Principles .................................................................................... 25 

3.4.1 Modularity ............................................................................................................................ 25 



vi 
 

3.4.2 Separation of Concerns ........................................................................................................ 26 

3.4.3 Single Responsibility Principle ............................................................................................ 27 

3.4.4 Single Point of Entry ............................................................................................................ 28 

3.4.5 Ad-hoc Polymorphism ......................................................................................................... 29 

3.4.6 Information hiding .............................................................................................................. 29 

3.5 Conflicting principles .................................................................................................................. 30 

3.5.1 Separation of Concerns versus Single Responsibility Principle .......................................... 30 

3.5.2 Single Point of Entry versus Ad-hoc Polymorphism ............................................................ 31 

4 Case study .......................................................................................................................................... 32 

4.1 Outline ......................................................................................................................................... 32 

4.1.1 The Business ......................................................................................................................... 32 

4.1.2 The Architect ........................................................................................................................ 33 

4.1.3 The Technicians ................................................................................................................... 33 

4.2 Model analysis............................................................................................................................. 34 

4.2.1 Large Poster – First Version ................................................................................................ 34 

4.2.2 Large Poster – Second Version ........................................................................................... 36 

4.2.3 Large Poster – Third Version .............................................................................................. 38 

4.2.4 BPMN Model ....................................................................................................................... 39 

4.3 Conclusions ................................................................................................................................. 42 

4.3.1 Definition of overview .......................................................................................................... 42 

4.3.2 Suitability of flowcharts ....................................................................................................... 43 

4.3.3 Suitability of BPMN ............................................................................................................. 44 

4.3.4 Purpose of modeling ............................................................................................................ 44 

4.3.5 Types of abstraction ............................................................................................................. 45 

5 General issues .................................................................................................................................... 46 

5.1 Conflicting mindsets of involved stakeholders ........................................................................... 46 

5.2 Conflicting goals of business process modeling ......................................................................... 46 

5.3 Fallacy of imperative reductionism ............................................................................................ 47 

5.4 Novice modelers versus expert modelers ................................................................................... 48 

5.5 Quality of abstraction .................................................................................................................. 48 

5.6 Scientific approach versus business approach ........................................................................... 49 

5.7 Lack of standard business process modeling language .............................................................. 49 

5.8 Lack of adequate tool support .................................................................................................... 50 

5.9 Presence of technical details in business process models .......................................................... 50 

5.10 False expectations of BPM projects .......................................................................................... 52 

6 Discussion & Future Work ................................................................................................................. 53 

7 Conclusion .......................................................................................................................................... 54 

8 Literature ........................................................................................................................................... 56 

 



vii 
 

Table of Figures 

Figure 1 - BPM life-cycle ......................................................................................................................... 4 

Figure 2 - Flowchart of a person watching TV ....................................................................................... 5 

Figure 3 - Petri net of two traffic lights .................................................................................................. 6 

Figure 4 - UML activity diagram of an ordering process ....................................................................... 6 

Figure 5 - RAD diagram of an article’s lifecycle ..................................................................................... 7 

Figure 6 - EPC diagram of an ordering process ..................................................................................... 8 

Figure 7 - IDEF0 diagram of a furniture construction process ........................................................... 10 

Figure 8 - IDEF3 diagram of an odering process .................................................................................. 11 

Figure 9 - BPMN diagram of an ordering process ................................................................................ 12 

Figure 10 - Four ontological deficiencies of a modeling language ........................................................ 15 

Figure 11 - Two examples of coupling .................................................................................................... 17 

Figure 12 - Two examples of cohesion ................................................................................................... 18 

Figure 13 - Transferring knowledge using language ............................................................................ 23 

Figure 14 - Example of Separation of Concerns in flowcharts ............................................................. 26 

Figure 15 - BPMN diagram of the 'Send Invoice' sub-process ............................................................. 28 

Figure 16 - BPMN diagram of the 'Create Invoice' sub-process .......................................................... 28 

Figure 17 - Three uses of sub-processes in BPMN ............................................................................... 28 

Figure 18 - BPMN diagram of a customer complaint process. ............................................................ 29 

Figure 19 - Overlapping business processes in a BPMN diagram ........................................................ 31 

Figure 20 - First version of the large poster ......................................................................................... 35 

Figure 21 - Two examples of flowchart anti-patterns .......................................................................... 36 

Figure 22 - Second version of the large poster ..................................................................................... 37 

Figure 23 - Third version of the large poster ....................................................................................... 39 

Figure 24 - Trigger with multiple inbound and outbound flows ......................................................... 39 

Figure 25 - Root diagram of the BMPN model ..................................................................................... 40 

Figure 26 - Hierarchical view of the various BPMN diagrams ............................................................. 41 

Figure 27 - Incorrect use of basic BPMN constructs ............................................................................. 41 

Figure 28 - Combination of flowchart notation and colored rectangles .............................................. 43 

Figure 29 - Specification of BPMN 2.0 Collaboration Diagram ........................................................... 51 

 

file:///E:/Dropbox/Internhip/Documents/Thesis%20v12.docx%23_Toc301791351
file:///E:/Dropbox/Internhip/Documents/Thesis%20v12.docx%23_Toc301791367
file:///E:/Dropbox/Internhip/Documents/Thesis%20v12.docx%23_Toc301791368
file:///E:/Dropbox/Internhip/Documents/Thesis%20v12.docx%23_Toc301791371
file:///E:/Dropbox/Internhip/Documents/Thesis%20v12.docx%23_Toc301791374
file:///E:/Dropbox/Internhip/Documents/Thesis%20v12.docx%23_Toc301791378


1 
 

1 Introduction 

Business process management (BPM) is an increasingly important topic for large organizations. 

Business process-awareness is at an all-time high and contemporary organizations invest 

considerable effort in BPM projects in order to attain enterprise operational efficiency  [1]. Despite 

the great attention BPM has received both from the business world and the research community, 

organizations are still unable to fulfill their demand for expert knowledge in BPM projects.  Both 

BPM projects and BPM as a research topic are associated with a degree of uncertainty and there 

exists much quarrel in the BPM community. To illustrate, at the time of writing there is still no 

generally accepted consensus on what BPM actually stands for or what it encompasses [2]. The lack 

of a solid theoretical foundation for BPM is one of the primary motivators for our research [3]. 

A core element of BPM is the so-called business process model1, which is a systematic description 

of a business process generally in the form of a series of activities. According to Ould [4], there are 

three goals one tries to achieve with a business process model. To each goal, we assign a certain level 

of modeling effort, which we define as the time, methodological knowledge, technical support and 

stakeholder commitment required to achieve the desired goal. The three goals, in order from 

minimal modeling effort to maximal modeling effort are: 

 Description, with the purpose of facilitating shared understanding amongst business 

stakeholders and to achieve consensus on the manner of which a business accomplishes its goals.  

 Analysis, with the purpose of improving a business process in order to increase efficiency of the 

overall organization. Process models created for this purpose are generally measurable in some 

way (e.g. measuring the throughput of a production process or the average time required to 

complete an ordering process). 

 Enactment, with the purpose of providing direct IT support to a business process. Process 

models that have been created for this purpose can either be directly executed by a process 

engine, translated into a machine executable model or used as a basis for software development 

[5]. 

While the first and second goal can certainly lead to organizational benefits, most BPM projects 

aim to achieve the third goal. In fact, the BPM approach originally focused on the automation of 

business processes. In this context, the inception of business process modeling can be seen as an 

attempt to create a common language between business and IT stakeholders. Our research focuses 

on whether this goal has been achieved, which also constitutes our main research question: 

Can business process modeling serve as a common language between business and IT 

stakeholders? 

In order to answer this question, we conducted a two phase research. In the first phase, we 

examine the various theoretical principles underlying our main research question, while in the 

second phase we examine the problems currently present in BPM projects. The first phase of our 

research opens with an exploration of existing business process modeling languages: 

What business process modeling languages currently exist, what are their origins and in 

what manner do they represent business processes? 

Answers to this question helps to shape the context of the problem we are attempting to solve by 

examining the current state of affairs. 

                                                             
1 Be aware that the acronym BPM refers to business process management and not business process 
modeling. 



2 
 

Next, we give a short summary of the business IT alignment problem, although we assume that 

the reader already possess a basic understanding of this dilemma. We will make the assumption that 

the business IT alignment problem is essentially a language problem: Business stakeholders 

emphasize natural language, while IT stakeholders emphasize artificial language, thus hindering 

successful communication. With this assumption in mind, we attempt to answer the following 

question: 

How do natural language and artificial languages assist in the understanding and 

representation of business processes? 

Answers to this question aids in building an understanding of the language problem and 

assessing whether it is feasible to create a common language for business and IT stakeholders. The 

theory of languages is followed by the theory of conceptual modeling. These help to understand how 

the modeling activity shapes the business process: 

How does conceptual modeling assist in the design of business processes? 

The first phase of our research is concluded by a listing of system design principles and the 

application of these principles to the design of business processes. Moreover, it is shown that 

business process modeling can be used as a means to measure the successful application of these 

principles.  

What system design principles exist and can these be applied to the design of business 

processes? 

In the second phase of our research, we performed a case study in order to assess the problems in 

real world BPM projects. The empirical findings of the case study are combined with the theoretical 

findings of the first phase to produce a listing of generic issues that hinder business process 

modeling. Based on these issues, we draw our final conclusion on whether business process 

modeling has been successful in bridging the business-IT divide. 

Answers to these questions will form the basis for a set of guidelines that business users can 

follow to create higher quality business process models. As these models are at the heart of most 

BPM projects, modeling improvements will consecutively benefit all stakeholders involved with the 

BPM project. Moreover, we hope to spread awareness of the fundamental issues associated with 

business process modeling in order to prevent future BPM projects from falling into common 

business process modeling pitfalls. 

The remainder of this thesis is structured as follows: Chapter 2 provides a series of theories, 

which are subsequently applied to business process modeling in chapter 3. Chapter  4 provides a 

description and analysis of our case study, which lead to the listing of generic issues in chapter 5. To 

reiterate, chapter 2 and 3 represent the first phase of our research, while chapter 4 and 5 represent 

the second phase of our research. Chapter 6 provides the discussion of our research and chapter 7 

provides the most prominent conclusions of our research. 



3 
 

2 Theoretical background 

An elaboration of the various theoretical topics involved in our research will be provided in this 

chapter. The topics we will discuss are business process management, business process modeling, 

business-IT alignment, language theory, conceptual modeling, abstraction and system design 

principles. 

2.1 Business process management 

Business process management (BPM) is a systematic approach towards the definition, execution, 

management and refinement of business processes. A business process is a collection of activities or 

tasks that produce a specific service or product, generally involving both human interaction and 

computer applications. 

All BPM activities can be attributed to one of the five phases of the BPM lifecycle:  

 Design phase, during which existing business processes are identified and future business 

processes are designed. It is not uncommon for many stakeholders to be involved in this phase as 

business processes can be interdepartmental or even inter-organizational. Typical information 

required for the identification of business processes are tasks, quantifiable deliverables (e.g. 

documents), responsibilities, computer systems and required resources.  

 Modeling phase, during which the information gathered during the design phase is made explicit 

in a business process model. These models are usually created with elaborate modeling tools, 

using a standard for business process modeling, such as the Business Process Modeling Notation 

(BPMN) and subsequently stored in a so-called modeling repository.  

 Execution phase, during which computer applications are deployed to support the automation of 

the business process. In traditional organizations, there are many computer applications that 

each perform a specific task. These applications are not unaware of each other’s existence nor are 

they aware of the context in which they are used. Business process orchestration attempts to 

connect these applications by a main application, which is aware of the business process [6].  

In addition, more recent developments of BPM technology aim to use the business process model 

itself as a basis for automation. By formalizing the business process model, it can be interpreted 

and subsequently executed by a so-called business process engine. This approach allows 

computers to be aware of the actual business process as it is executed, which in turn enables a 

variety of advantages to the business.  

 Monitoring phase, during which the performance of the implemented business processes is 

measured. The depth of the analysis depends on what BPM technologies were implemented 

during the execution phase. When a feature rich BPMS is used, one can measure process 

performance both at the global level and at the instance level. This information can subsequently 

be aggregated and displayed in comprehensive monitoring dashboards, which give managers 

quantifiable real-life data of the performance of their business. When this degree of rigor is 

employed during the monitoring phase, the act of monitoring becomes a goal by itself, which is 

also known as business activity monitoring. 

 Optimization phase, during which business processes are optimized based on the findings of the 

monitoring phase. These optimizations may lead to the redesign of existing business processes or 

the design of additional business processes. As a result, the optimization phase can be the 

initiator of a new design phase, thus completing the BPM life-cycle. 



4 
 

The five phases of the BPM life-cycle shown in figure 

1 form a never-ending loop, known as the continuous 

process improvement cycle. The modeling phase is, for 

obvious reasons, of great interest to our research, but 

another important phase is the design phase. As we will 

show, modeling can be a design activity by itself and 

designs tend to change when the modeling activity 

becomes involved.  

In other words, design influence model and model 

influence design. Because of this, the distinction 

between what activities relate to the design of the 

business process and what relate to the modeling of the 

business process is not always clear. Indeed, alternative 

versions of the BPM life-cycle exist, which describe the 

design and modeling phase as one. 

2.2 Business process modeling 

Business process models play a pivotal role in the business process management discipline. There 

are many modeling methodologies available which can be used to model business processes. Some of 

these methodologies have been specifically designed for this purpose, while others predate the BPM 

discipline and have been adapted for this purpose. Regarding the three goals of process modeling 

(i.e. description, analysis and enactment), most methodologies tend to be suitable for only one of the 

three goals, but not all three.  

The great diversity of business process modeling languages has already leaded to researchers 

attempting to chart all these languages [7]. Particularly, a research done by Hafedh Mili et al. gives 

an excellent overview of these languages [8]. We will provide a less elaborate overview and only 

describe those languages that have played an important role in business process modeling. The 

following languages will be covered: Flowchart, Petri net, Unified Modeling Language, Role Activity 

Diagram, Event-driven Process Chain, Integrated Definition for Function Modeling and Business 

Process Management Notation. 

2.2.1 Flowchart 

A flowchart is a diagram that represents a process as a sequence of activities and decisions. 

Flowcharts are the oldest and most basic process related modeling methodology known, with their 

first reported occurrence dating back to the early twenties, where they were used by mechanical 

engineers to describe machine behavior. 

Basic flowchart constructs are activities, decisions, start points and end points. These are the 

basic building blocks typically used to represent processes. More advanced flowcharts use data-flow 

constructs (e.g. documents or machine input/output) to denote what information flows throughout 

the process. Relationships in a flowchart are denoted by arrows which indicate a flow of control from 

one element to another. All elements in a flowchart are either directly or indirectly connected to one 

and another. 

Figure 2 shows an example of a flowchart of a person watching TV. The process starts with the 

person turning on the TV, after which he observes the channel the TV is on. As long as the channel 

remains interesting, the person will continue to view that channel. When he is no longer interested 

in the channel, he can choose to switch the channel, granted there are any channels left which he has 

not seen. When all channels have been checked, the TV is turned off and the process ends.  

Design 

Modeling 

Execution 

Monitoring 

Optimization 

Figure 1 - BPM life-cycle 



5 
 

 

Figure 2 - Flowchart of a person watching TV 

Besides the simple set of constructs, flowcharts offer little to none methodological support. There 

are some commonly agreed on best-practices for designing flowcharts (e.g. limit crossing arrows), 

but guidelines for the application of flowcharts differ greatly.  

With respect to business process modeling, flowcharts are often used as a sketching tool dur ing 

the earlier phases of the model development. The intuitiveness of flowcharts makes it an ideal tool 

for quickly charting processes in meetings or workshops. 

2.2.2 Petri net  

A Petri net is a formal modeling language for the description of concurrent processes. Carl Adam 

Petri invented the graphical notation of Petri nets in 1939 for the purpose of describing chemical 

processes, while the concept of Petri nets as we know them today would not be introduced by him 

until the early sixties. Unlike other methodologies, Petri nets have a strict mathematical definition of 

their execution semantics, which means that all well-formed Petri nets can be interpreted and 

executed by a machine. Whereas most other methodologies focus on representing the structure of a 

process, Petri nets focuses on the actual behavior of a process. Moreover, the mathematical basis of 

Petri nets makes them suitable for various kinds of automated analysis. 

A Petri net consists of places and transitions, which are connected by arrows, otherwise known as 

directed arcs. One place may have multiple arcs running to distinct transitions and one transition 

may have multiple arcs running to distinct places. However, no arcs may ever run directly between 

places or transitions. Places can contain zero or more tokens which indicate the state of the place. 

When all the incoming arcs of a transition are connected to places that each has at least one token, 

the transition may fire. A firing transition will remove one token from each place connected to every 

incoming arc and add one token to each place connected to every outgoing arc. Note that when a 

transition meets the conditions to fire, it does not necessarily have to. Nor can the order of firing be 

determined when multiple transitions meet this condition. As a result, the execution of Petri nets is 

non-deterministic. 

Figure 3 shows an example of two traffic lights on an intersection using Petri nets. Places R1, G1 

and O1 denote the three states of the first traffic light (i.e. red, green and orange). Similarly, the 

states of the second traffic light are represented with the places R2, G2 and O2. Place S is used to 

restrict the behavior of the traffic lights, in order to prevent both lights from being green or orange 

at the same time. Figure 3(a) shows the state of the traffic lights when they are both red. There are 

two transitions which meet the preconditions for firing and these are denoted by a red color.  These 

transitions allow either traffic light to move from the red state to the green state. Figure 3(b) shows 

the state of the Petri net after the first traffic light has turned green. Note that the only valid 

transition in this state is for the first traffic light to turn orange, while the second traffic light is no 

longer capable of turning green.  

Although Petri nets have made great contributions to the field of computer science, their 

application in other disciplines, such as workflow management, has only recently gained attention. 

With respect to business process modeling, Petri nets have been used to translate non-formal 

process models into formal process models for the purpose of analyzing or simulating these 

processes [9], [10]. 

Start
Interesting 
channel?

Watch channelTurn on TV

Checked all 
channels?

Change 
channel

No

No

Yes

Turn off TVYes End



6 
 

  

(a) Both lights are red and are capable of 
transitioning to green 

(b) The first light is green and the second light 
can no longer turn green 

Figure 3 - Petri net of two traffic lights 

2.2.3 Unified Modeling Language 

The Unified Modeling Language (UML) is a general-purpose modeling language originally designed 

to be used in the field of object-oriented software engineering. UML is a standard which is actively 

managed by the Object Management Group (OMG). At the time of writing, the latest formally 

released version of UML is 2.3. The most recent version of UML specifies fourteen different 

diagrams, of which the Activity Diagram is the most used diagram for business process modeling.  

An UML Activity Diagram consists of action nodes, object nodes and control nodes. An action 

node is the fundamental unit of behavior specification present in many UML diagrams. In the 

context of an activity diagram, an action represents some measurable piece of work which should be 

accomplished by a person or a computer. Object nodes represent the information which is consumed 

or produced by an action. From a functional perspective, an action is a transformation from a set of 

input objects to a set of output objects. Control nodes describe some aspect of the flow of control. 

Important control nodes are initial nodes, final nodes, decisions, forks and joins. The initial and 

final nodes represent the start and end of an activity diagram. Decisions are used to direct the 

control flow based on some information. Forks and joins can be used to split and merge the control 

flow in order to represent parallel processes [11].  

There are two other important features of UML Activity Diagrams which are swimlane partitions 

and sub-activities. Swimlane partitions can be used to group actions on some common 

characteristic. Sub-activities can be used to aggregate an activity diagram into a single activity for 

use in other activity diagrams. Sub-activities facilitate composition and decomposition in activity 

diagrams. 

Figure 4 shows an example of an UML activity diagram of an ordering process. The goal of the 

ordering process is to fulfill orders, ship products and perform billing tasks. A fork is used to 

represent that the billing tasks are ran in parallel with order fulfillment and shipping. A decision is 

used to represent that priority orders are shipped overnight, while all other orders are shipped using 

regular delivery. When the products have been shipped and the customer has paid the invoice, the 

order is closed and the process ends. 

 

Figure 4 - UML activity diagram of an ordering process 

R1

G1

O1

G2

O2

R2S R1

G1

O1

G2

O2

R2S

Receive Order

Fill Order

Send Invoice Receive Payment

Overnight Delivery

Regular Delivery

[priority order] 

[else] 

Close Order



7 
 

Although the original purpose of UML was to assist the design of object-oriented software 

systems, more recent versions of UML have broadened its view to systems in general. Particularly, 

UML Activity Diagrams have been extended with several constructs that are attuned towards the 

organizational context [12]. While UML was never developed with the goal of business process 

modeling in mind, it has been used for this purpose extensively. The main motivators for process 

analysts to use UML are its great popularity, the large breadth of both methodological support and 

tooling support, the generic applicability of UML for conceptual modeling and UML’s native support 

for extension with custom constructs. In other words, UML is an accepted and well documented 

general purpose modeling language. 

2.2.4 Role Activity Diagrams 

A Role Activity Diagram (RAD) is an element of the STRIM business process modeling methodology 

developed by Praxis Plc. for the elicitation, modeling and analysis of business processes [8]. As the 

name suggests, RAD are very similar to UML activity diagrams, with the main differences being that 

RAD emphasizes responsibilities, while UML activity diagrams emphasizes orchestration of the 

activities (e.g. aspects regarding the sequential or parallel execution of activities). 

The primary constructs used in a RAD are roles, actions, interactions and decisions. Roles 

contain the actions and decisions that are performed by the man or machine with the assigned role. 

The interaction construct allows a role to communicate with another role, which also constitutes the 

only way how a relationship can be established between roles. 

 

Figure 5 - RAD diagram of an article’s lifecycle 

Writer Reviewer

Write article

Publisher

Review article

YesNo

Reject article

Assess feedback

Yes No

Rewrite article

Discard article

Submit article

Article fixable?

Article passes?

Submit article

Format article

Notify author

Publish article



8 
 

Figure 5 shows an example of a Role Activity Diagram describing the end-to-end lifecycle of an 

article. The three large grey rectangles with the rounded corners represent the three roles involved 

with the lifecycle. The process starts with a writer who creates an article. When the article is deemed 

finished by the writer, it is submitted to a reviewer for approval. 

The reviewer can either reject or approve the article. A rejected article is returned to the writer, 

who then uses the feedback to decide whether he wants to adapt the article or discard it. An adapted 

article enters the same review cycle as the written article, while a discarded article  effectively ends 

the article’s lifecycle and thus the process. An approved article is submitted to the publisher, who 

formats and publishes the article. The author of the article is notified of the article’s publishing.  

Note that there is an implicit timeline present in the diagram, as actions at the bottom are 

generally performed at a later point in time than actions at the top. Interactions are always denoted 

by horizontal lines as they represent synchronization moments where two or more roles come 

together and actively exchange information.  

There are no formal semantics underlying a RAD as these models are aimed at facilitating shared 

understanding among stakeholders, rather than providing a basis for process simulation or 

execution. However, some research has aimed to formalize RADs by translating them to other 

representations such as Petri Nets in order to perform simulations [13], [14].  

2.2.5 Event-driven Process Chains  

An Event-driven Process Chain (EPC) is a business process modeling methodology aimed at creating 

business understandable models. Professor August-Wilhelm Scheer of the Saarland University 

developed the EPC method in 1992. Since its creation, the EPC method has grown to become one of 

the more popular business process modeling methodologies.  

The core EPC constructs are events, functions and logical connectors. Events represent the pre- 

and post-conditions of a function, while a function represents an activity performed within the 

organization. Events are passive in the sense that they represent a state, whereas functions are active 

as they represent a transformation from one state to another. An EPC always starts and ends with an 

event. Both events and functions may only have one inbound and outbound relationship. Logical 

connectors are used to represent one-to-many relationships between events and functions.  

An event cannot be preceded or succeeded by another event nor can a function be preceded or 

succeeded by another function. The latter constraint is generally ignored in practice as events 

between functions are often implicit. 

Besides the core constructs, EPC also has several additional constructs which can be used to add 

additional information to the diagram. For instance, the organization unit construct can be used to 

represent which person or organization is responsible for the execution of a specific function.  

Figure 6 shows an example of an EPC diagram of an ordering process, similar to the one shown in 

figure 4. Note that the biggest difference lies in the explication of the events. Events start and end 

the process. Moreover, all functions are the consequence of one or more events and also cause one or 

more events to occur. This approach towards modeling the ordering process creates a balanced view 

between what states the process can be in and what activities are executed. 

The emphasis on logical connectors and functions makes EPC seem technically oriented, while it 

is in fact aimed at the business stakeholders, rather than the IT stakeholders. There are only little 

formal semantics underlying EPC, although some research has been performed on formalizing EPC 

[15]. 

 

Figure 6 - EPC diagram of an ordering process 

Order Received

Fill Order

V

Send Invoice
Payment 
Received

V

Products 
Shippable

XOR
Determine 

Priority

Order Complete

XOR

Ship Overnight

Ship Regular

Process 
Payment

Payment 
Processed

Close Order

Order Shipped

High Priority

Normal Priority



9 
 

2.2.6 Integrated Definition for Functional Modeling  

The Integrated Definition for Functional Modeling (IDEF) is a series of modeling languages 

originally designed to be used in the field of software engineering. The first IDEF modeling language 

came into existence in the mid-seventies as a byproduct of the Integrated Computer-Aided 

Manufacturing program of the United States Air Force. Since then, the IDEF family has grown to a 

set of sixteen modeling languages, each addition simply named IDEF0, IDEF1 and so on. However, 

only the first five IDEF languages have matured into well-accepted modeling languages, while the 

rest were never developed any further than their initial definition.  

Of the sixteen modeling languages, IDEF0 and IDEF3 are the most suitable for business process 

modeling [16]. IDEF0 models business functions, while IDEF3 models business processes, so strictly 

speaking, IDEF3 is the only language of the IDEF family that is actually meant for business process 

modeling. In practice however, IDEF0 and IDEF3 are used to describe business processes, but from 

radically different viewpoints. Thus, the two languages should be considered complimentary rather 

than exclusive. 

IDEF0 

The IDEF0 modeling language has a limited syntax. In essence, everything is built upon the 

construct of a function. A function is an activity, similar to those used in flowcharts and EPC 

diagrams, which is represented by a rectangle. A function consumes input to produce some output. 

Additionally, a function is guided, regulated or constrained by controls and performed or executed 

by mechanisms. The output of one function can be the input, control or mechanism of another 

function. Inputs, controls, outputs and mechanisms (ICOM) are all represented by arrows which are 

connected to the function. Each ICOM arrow has a distinct side of the function rectangle to which it 

may connect. Input arrows connect at the left, control arrows connect at the top, output arrows 

connect at the right and mechanism arrows connect at the bottom [17]. 

Multiple functions in a diagram are ordered by dominance, with the most dominant function 

being placed at the top left of the diagram and the least dominant function being placed at the 

bottom right. A function dominates another function when it has more ICOM relationships leading 

to the other function than the other way around. This approach creates a cascading effect resulting 

in diagrams that have a waterfall like flow, which makes them easier to interpret.  

Functional decomposition, on which we will further elaborate in 2.5.2, plays an instrumental role 

in IDEF0. All functions are always executed in a context, which is represented as the canvas on 

which the IDEF0 diagram is drawn. All inputs, controls and mechanisms which are not created by 

the functions within the diagram, originate from this context. Any function inside an IDEF0 diagram 

can be decomposed into a new diagram. In doing so, the ICOM of the function are mapped to the 

context of the new diagram. Numeric identifiers are used to cross-reference functions or ICOM 

arrows which appear in various diagrams.  

Figure 7 shows an example of the order fulfillment of a furniture company. The process entails 

the creation of a design, the building of the furniture and the inspection of the built furniture. The 

‘create design’ function transforms design ideas, the input, to actual designs of furniture, the output.  

The designers are the mechanisms which execute the function, while the design process itself is 

controlled by the customer requirements. The designs which are the output of the design function 

are in turn used to control the building of the furniture. This shows that the output of a function 

does not have to be the input of another function, but can also serve as a control or mechanism. 

From the perspective of functional decomposition, the diagram can be interpreted as a function 

called ‘Fulfill furniture order’, with the ICOM relationships I1, I2, C1, C2, M1 and O1. The 

parenthesis at the start of the control arrow called ‘Legal requirements’ indicate that the control 

does not appear in the parent diagram. This construction is called a ‘Tunnel in’. Likewise, the 

parenthesis at the end of the mechanism arrow called ‘Designers’ indicate that the mechanism does 

not appear in the decomposition of the ‘Create design’ function. This construction is called a ‘Tunnel 

out’. 



10 
 

 

Figure 7 - IDEF0 diagram of a furniture construction process 

The number below the ‘Create design’ function reveals that the function is decomposed in 

diagram number 6. 

Note that unlike all other modeling languages, an IDEF0 diagram does not describe a sequence of 

activities. The relationships between the various functions indicate their dependencies, which may 

imply a causal relation, but this does not necessarily have to. The lack of temporal sequencing is one 

of the main advantages of IDEF0 as it allows users to model what the business does without forcing 

them to explicate how the business accomplishes this. Unfortunately, the tendency for people to 

interpret an IDEF0 diagram as a flowchart is also one of its disadvantages. Moreover, not everyone 

is comfortable with IDEF0 abstracting away time itself as it makes the language less intuitive. The 

lack of sequencing was one of the main motivators for the creation of IDEF3. 

IDEF3 

IDEF3 focuses on the temporal aspect of business processes, which is in sharp contrast to IDEF0.  

Additionally, IDEF3 describes two different types of modeling languages. One for the purpose of 

describing process flows and one for the purpose of describing object state transitions. We will only 

cover the prior technique to limit our already lengthy description of IDEF.  

 Just like most other business process modeling languages, IDEF3 describes a business process as 

a series of activities. An activity is called a unit of behavior (UOB) and is represented by a rectangle. 

A causal relationship between two UOBs is called a precedence link and is represented by an arrow. 

Junctions can be used to split, join, branch and merge the control flow and are represented by small 

rectangles. The aforementioned constructs are the basic building blocks of IDEF3, which makes the 

language very similar to UML activity diagrams or EPC diagrams without the event construct.  

Figure 8 shows an example of an IDEF3 process flow diagram of an ordering process. This 

example is based on the same example used in the UML activity diagram, shown in figure 4. Indeed, 

the diagram shows great similarities with the UML activity diagram and EPC diagram we covered.   

1

6

Create design

2

Build 
furniture

3

Perform final 
inspection

TITLE:NODE: NO.:

Customer
requirements

C2

Design ideas

I2

Materials

I1

Design

Safety 
standards

C1 Legal 
requirements

Inspected 
furniture

O1

TITLE:NODE: NO.: 5 (3)A0 Fulfill furniture order

Carpentry section

Work specification

External specification

Furniture

M1
Sub-specificated furniture

Inspectors

Designers

Carpenters



11 
 

 

Figure 8 - IDEF3 diagram of an odering process 

Note that there are no constructs which indicate the start or end of the process. The shadow 

below the ‘Fill Order’ UOB indicates that the UOB has been decomposed into another diagram.  

IDEF0 and IDEF3 have some unique characteristics when compared to the other modeling 

languages. Both IDEF languages emphasize semantics over an elaborate syntax, making the IDEF 

languages more formal than all the other languages. Both IDEF languages support the use of 

functional decomposition and encourage its use. In fact, the title block constructs act as a drawing 

canvas which constrains the drawing space, thus forcing one to use functional decomposition. 

Another advantage of this approach is that IDEF diagrams work well on paper as the title block 

constructs are usually the size of a standard A4 paper. In contrast, other modeling languages may 

lead to the creation of very large diagrams, which introduce a range of problems. 

Unfortunately, the emphasis on functional decomposition is also a disadvantage of the IDEF 

modeling languages. Large models may span across numerous diagrams, which makes it difficult to 

maintain overview of the overall process. Although there is always a root diagram at the highest level 

of the decomposition, the functions in this diagram do not reveal the depth of the decomposition. 

For this reason, IDEF models are often accompanied with a model tree diagram which describes the 

relationships between the various IDEF diagrams. 

2.2.7 Business Process Modeling Notation  

The Business Process Modeling Notation (BPMN) is a business process modeling methodology that 

aims to produce human understandable representations of business processes. The initial version of 

BPMN was developed by the Business Process Management Initiative (BPMI) in 2004. Two years 

later, the Object Modeling Group (OMG) adopted the language as a standard for business process 

modeling. As of 2011, BPMN is the most used notation for the modeling of business processes and 

considered the de facto standard [18]. At the time of writing, the latest version of BPMN is 2.0. Due 

to its immense popularity, we will use BPMN to provide examples of process modeling in the 

upcoming chapters. 

BPMN is based on the same principles as flowcharts, but includes a much greater variety of 

constructs, making the language far more expressive than flowcharts. Besides flowcharts, the 

constructs present in BPMN show similarity to those used in UML activity diagrams and EPC 

diagrams. The core constructs of BPMN are events, activities, gateways and connections. Activities 

represent some kind of work which must be done, while events represent notable occurrences.  

Gateways can either be used to represent decisions which steer the control flow or can be used to 

split or merge the control flow (e.g. to perform activities in parallel). Finally, connections are used to 

establish the relationships between the aforementioned constructs. Each of these four constructs has 

a variety of more specific constructs which can be used to represent certain cases. For instance, the 

Timer Event is used to represent an event which occurs every so often.  

Besides the core constructs, which are suitable for modeling most business processes, there is 

also a set of extended constructs. These constructs are meant for expert modelers who need to model 

Receive Order

1  

2  

Fill Order

Overnight 
Delivery

3  

Regular 
Delivery

4  

Send Invoice

5  

Receive 
Payment

6  

Close Order

7  

X X

& &



12 
 

the more exotic cases. An example is the Event-Based Exclusive Gateway, which is a combination of 

a regular gateway, an Intermediate Event and a Start Multiple Event. One of the specific purposes of 

this complex construct is to represent scenarios in which various events can trigger the start of a 

process. Finally, BPMN supports swim lanes, which can be used to organize activities per role, and 

artifacts, which can be used to add additional information to the model, such as text annotations.  

Figure 9 shows an example of a BPMN diagram of an ordering process. This example is based on 

the same example as the UML activity diagram shown in figure 4. The BPMN diagram shows great 

similarities to the previous diagrams which covered this example. Some additional details were 

incorporated in order in the example to showcase the expressive power of BPMN.  

The circles represent events, which indicate notable occurrences during the ordering process. For 

instance, the ordering process is started when an order is received. The envelope inside the event 

element indicates that the event is triggered by receiving an actual message (e.g. a letter or e-mail). 

There is also an event present at the border of the ‘Process Order’ task. A boundary event represents 

a deviation or exception which can occur during the execution of the task. In this particular case, the 

event represents that the customer who placed the order is not known by the business. The symbol 

inside the event means that this is an Error Event and the bold face of the event means that the 

process ends when the event occurs. End Events with specific types can lead to follow-up actions, 

assuming the process in figure 9 is used as a sub-process in another diagram. Another use of events 

can be seen after the invoice has been sent. An Intermediate Message Event is used to represent the 

event of receiving payment, whereas an Intermediate Timer Event is used to represent a fourteen 

day delay. What this means is that when payment is not received within fourteen days, the order is 

escalated. Intermediate Events are events which do not start or end a process and are represented by 

a double border.  

The diamonds represent gateways. The gateways with the plus symbol are Parallel Gateways 

while the gateways with the cross symbol are Exclusive Gateways. Their semantics are identical to 

the junctions of the IDEF3 diagram in figure 8. One interesting exception is the gateway after the 

‘Send Invoice’ task, which is called an Exclusive Event-Based Gateway. This gateway is always 

followed by two or more Intermediate Events. The main purpose of this specific gateway is to 

indicate that one and only one event-based path succeeding the gateway may be taken.  This is 

different from the Exclusive Data-Based Gateway which relies on data from the process instance to 

decide which branch to take. In contrast, the process instance is unaware whether the event 

‘Payment received’ or ’14 days passed’ will happen first, only that when one event occurs, the process 

must continue on that path and ignore all other paths. 

 

Figure 9 - BPMN diagram of an ordering process 

Process 
Order

Fill Order

Send 
Invoice

Regular 
Delivery

Overnight 
Delivery

Priority order

Process 
Payment

Close Order

Escalate 
Order

Order Received

Payment received

Order Closed

14 days passed Order Escalated

Unknown customer



13 
 

The rectangles with rounded corners represent tasks and their semantics are similar to those 

found in the other examples. The symbol in the top right corner of the rectangle indicates the type of 

the task. A portrait specifies that a human is responsible for the execution of the task, while a gear 

specifies that a computer is responsible for the execution of the task. These help to differentiate 

between manual and automated tasks. The [+] symbol at the bottom center of the ‘Fill Order’ task 

points out that the task is actually a sub-process, meaning there is another BPMN diagram 

underlying it. 

BPMN greatly emphasizes syntax over semantics. In fact, the set of available constructs in BPMN 

is so large that it is not always clear what construct is to be used in certain situations. In practice, 

over halve the users of BPMN only use the core set of constructs of BPMN [18]. 

2.3 Business-IT alignment 

The state in which an organization is able to use information technology effectively to achieve  

business objectives is called business-IT alignment and has been a topic of great attention over the 

last few decennia [19]. Although both groups of stakeholders are nowadays aware of the underlying 

issues, achieving business-IT alignment remains an elusive objective [20]. One of the main 

inhibitors of business-IT alignment is miscommunication caused by the fact that business and IT 

possess little knowledge of each other’s domain. The lack of mutual understanding is often 

paraphrased as business and IT speaking different languages or living in separate worlds. As a 

consequence of this misunderstanding, many software solutions developed by IT do not meet the 

demands of the business. Indeed, the effective translation of the demands of the business to a 

suitable software solution is often the most challenging part of an IT project [21].  

BPM attempts to overcome this issue by letting the business express their demands in a process 

model, which in turn can be translated to a formal process model and executed by a process engine 

[22]. Instead of making IT responsible for determining the behavior of the system, which usually 

requires IT to understand the rules of the business, the business becomes responsible for the 

behavior. The role of IT is to create an adequate environment in which these process models can be 

created, analyzed, managed, stored and executed. This is often paraphrased as IT supporting the 

business, rather than taking it over. 

We must add that we use the term business and IT to help facilitate our discussion, but realize 

that the distinction between the two is not as black and white as it used to be when the term was first 

coined back in 1995 [23]. As businesses rely more and more on IT to remain viable, the two groups 

have become intertwined and their boundaries have become blurred. A look at the current IT job 

market tells us, that a growing number of IT related vacancies no longer demands employees with a 

purely technical background, but rather seeks a mix of technical skills and so-called business skills. 

The latter refer to skills that include general understanding in the way businesses operate. Indeed, 

the demand for a Business-IT-hybrid employee is also recognizable in our current educational 

system, sprouting disciplines such as information sciences that educate its students in both fields. 

2.4 Language Theory 

Business process modeling incorporates various aspects from the theory of language. Firstly, we 

distinguish between natural language and artificial language as both types of language are used in 

process modeling. Secondly, two features of artificial languages, formality and notation, are 

explained.  

2.4.1 Natural language 

A natural language is a language that has evolved as a means of communication among people and is 

the type of language we are most concerned with in our daily lives. Although natural language can be 

considered to be developed by us, we only have a limited understanding of the origin of natural 



14 
 

language, how natural language works and how we are capable of processing natural language. 

Natural language can manifest itself in several ways, namely: speech, gestures and writings. 

2.4.2 Artificial language 

An artificial language is a language explicitly designed with a specific purpose in mind. This is in 

sharp contrast to natural language, which serves a general purpose and has evolved naturally over 

time. There are various reasons for the creation of artificial languages, such as to ease 

communication or to serve as a basis for formal logic. Besides the purpose of an artificial language, 

there are two other aspects which are of interest to us: 

 Formality refers to the precision of the syntax and semantics of the language. A sentence 

expressed in a fully formalized language, otherwise known as formal language, can be interpreted 

in one way and one way only. This property plays a crucial role in the field of formal logic, 

mathematics and computer programming. Languages with a formal syntax but informal 

semantics are called semi-formal languages. 

 Notation refers to the type of visual representation of the language in terms of text and/or 

graphics. Programming languages are usually text-based, whereas languages for conceptual 

modeling are usually graphics-based. Contrary to what one might expect, a modeling language 

does not necessarily involve a diagrammatic notation, but for the purpose of this thesis when we 

use the term modeling language, we will be referring to a graphical modeling language [24]. 

2.5 Conceptual Modeling 

A conceptual model is a descriptive model of a system. Although we do not have a clear definition of 

the term ‘system’, we will attempt to provide one based on its characteristics. A system is a collection 

of elements with a distinct boundary which separates it from its environment. A system has a 

purpose, is usually artificial and exhibits observable behavior. A system may consume some form of 

input and produce some form of output.  

Given these characteristics, many things can be considered systems. Consider a vending machine 

as a system. The system has a specific purpose, to sell snacks and beverages to customers . Its input 

is money and one or more button presses, while its output is the release of a snack or beverage. The 

outer case of the machine provides a clear boundary in the physical realm.  

 Whenever we speak of modeling in this thesis, we mean conceptual modeling. This is a 

refinement over the term model, which generally speaking is any simplified representation of (a part 

of) reality. Such a definition is too broad to be of value for our research. Besides the topic of 

conceptual models and modeling languages, the act of modeling itself is also a topic of scientific 

attention [25]. We will elaborate on two principles from this field, namely that of ontological 

expressivity and functional decomposition. 

2.5.1 Ontological Expressivity 

The theory of ontological expressivity concerns the degree in which a modeling language can be used 

to describe the real world [26]. Some research has already applied this theory on business process 

modeling languages [27]. The real world can be described using ontology, the study of what exists in 

reality, with respect to its properties, its structure and how it relates to other parts of the real world. 

This assumes the thesis of philosophical realism which views reality as existing independently of its 

observers and being made up of structures and relationships. In other words, some elements in 

reality already form meaningful structures and we do not create these structures ourselves. This 

assumption makes it easier to map reality to a modeling language and back [28]. 

The degree of expressivity can be described using four types of ontological deficiencies of a 

modeling language shown in figure 10. These deficiencies are the four possible combinations over 

the constructs that either do or do not exist in the real world or the modeling language.  



15 
 

 

Figure 10 - Four ontological deficiencies of a modeling language 

 Construct deficit. The modeling language lacks a construct which is present in the real world. The 

modeler will not be able to provide a direct representation of the real world construct and he or 

she will have to use one or more other modeling constructs to achieve the desired representation. 

 Construct redundancy. The modeling language has two or more constructs which describe the 

same construct in the real world, thus creating an ambiguity in the modeling language. The 

modeler will encounter difficulty what modeling construct to choose for the description of the 

real world construct. 

 Construct overload. The modeling language has a construct which describes two or more 

constructs in the real world. The modeler will encounter difficulty differentiating between the 

multiple real world constructs in his or her model.  

 Construct excess. The modeling language has a construct which is not present in the real world. 

The modeler will not be able to use this construct in his model in a meaningful manner. Modeling 

languages that exhibit a high level of construct excess appear bloated and overly complicated. 

2.5.2 Functional Decomposition 

Functional decomposition is the act of dividing a system into smaller subsystems with the purpose of 

increasing understanding of the system. This goal is also one of the primary motivators for the 

creation of conceptual models [29]. Generally speaking, decomposition is a fundamental cognitive 

principle we humans use to understand the world around us. To quote Goguen and Varela (1979): 

‘The world does not present itself to us neatly divided into systems, subsystems, environments. 

These are divisions which we make ourselves.’ We realize that this stance poses a conflict with the 

thesis of philosophical realism we mentioned in the previous subsection. A more appropriate thesis 

would be that of critical realism, which acknowledges that some of our interpretations accurately 

represent their real world counterparts, while other interpretations do not. Thus, critical realism can 

be seen as a relaxed form of philosophical realism with respect to its implications for the theory of 

ontology.  

Reductionists argue that functional decomposition will ultimately lead to complete knowledge of 

the system, while holists disagree, arguing that “The whole is different from the sum of its parts” . 

For instance, if one would take a car apart into its smallest constituent parts he or she might have 

gained full knowledge over the working of its combustion engine but not found an explanation why 

the steering wheel is on the left.  

Construct deficit (1:0)

Construct redundancy (1:n)

Construct overload (n:1)

Construct excess (0:1)

Real world Modeling Language



16 
 

2.6 Abstraction 

Abstraction has many different definitions and uses depending on its context. In its broadest sense, 

abstraction is a concept not associated with any specific instance. With respect to modeling, we 

define abstraction as the process by which an individual translates his observation of a part of the 

real world to a simplified form of knowledge. This definition exhibits great similarity to the act of 

modeling, which is on purpose as we believe that abstraction is a key component of any modeling 

activity.  

We need to be able to abstract in order to reduce the infinite complexity of the real world to a 

limited set of concepts. This is a skill which we develop when we are young and keep on developing 

as our knowledge of the world expands. It is difficult to measure how well someone is able to 

perform abstract thinking much like it is difficult to measure how abstract a certain concept is. For 

instance, young children often struggle with the concept of time when learning how to read a clock 

or calendar. For adults, these matters seem quite concrete, while the effect of time dilation from the 

theory of relativity is perceived as abstract by many. When people are unable to give a concrete 

interpretation of an abstract concept, they will often have trouble understanding that concept.  

In computer science, abstraction is the process by which programming constructs are defined 

with a specific meaning, while hiding away the implementation details [30]. The notion of hiding 

details plays an important role in any modeling activity as it allows one to leave out irrelevant 

information and focus on that which is deemed important. In business process modeling, 

information hiding is an important principle as these models tend to expand rapidly and a complete 

process description can contain an enormous amount of information.  

2.7 System Design Principles 

System design principle is an umbrella term we use to describe a principle which assists the design 

of a system. In this section, we use the same definition of a system as provided in section 2.5. We 

believe these principles can be used as generic guidelines for conceptualization. In other words, if 

conceptual modeling leads to the description of a system, then these principles can be  used to guide 

the creation of this description. Strictly speaking, creating a model of a system is very different from 

designing a system. However as we already discussed in 2.1, modeling the business process guides 

the design of the business process and vice versa.  

The principles we will explore are best known for their use in object oriented software design. 

Object orientation is a programming paradigm centered on the design of objects, which are data 

structures consisting of variables and methods. These objects can be considered as systems as they 

are created for a specific purpose, exhibit some behavior and have a well-defined boundary, often 

referred to as the scope of the object. The paradigm itself is not the focus of our attention. Instead, 

we focus on the design principles underlying object orientation as we believe that many of these 

principles transcend the computer science discipline. Note that there is considerable overlap 

between the various principles below. 

The following principles will be covered: Modularity, Separation of Concerns, Single 

Responsibility Principle, Single Point of Entry, Ad-hoc Polymorphism and Information hiding. 

2.7.1 Modularity 

Modularity concerns the design of a system as a set of separate, interchangeable components, called 

modules. Such an approach towards system design has many advantages such as improved coping 

with complexity, improved maintainability and reusability by enforcing logical boundaries between 

modules. The principle of modularity is supported by a variety of other principles and the next two 

subsections will describe the two most important factors driving modularity: the Separation of 

Concerns and the Single Responsibility Principle. 



17 
 

2.7.2 Separation of Concerns 

Separation of Concerns is the principle whereby a system is decomposed into a series of subsystems 

that each addresses a specific concern. The identification and Separation of Concerns allows one to 

cope with the complexity of a large system, by splitting the system into several smaller systems. The 

Separation of Concerns principle is used in various disciplines, including architecture and 

information design [31]. Unfortunately, there is no generally accepted definition of what constitutes 

as a concern or how one should achieve such a separation. As a result, the principle seems 

superfluous: The idea that a complex problem is easier to solve when it is split into several simpler 

problems is rather evident.  

The software quality metric called coupling is used to measure the level of dependencies a set of 

software modules have on each other. A set of modules that uphold the Separation of Concerns 

principle will have a low coupling, otherwise known as being loosely coupled, which is favorable over 

sets of modules that are highly coupled. The example in figure 11 shows two software systems 

consisting out of nine distinct modules. Figure 11(a) is loosely coupled as the nine modules have few 

dependencies on each other, while figure 11(b) is highly coupled as the nine modules have many 

dependencies on each other. 

  

(a) Loosely coupled (b) Tightly coupled 

Figure 11 - Two examples of coupling 

2.7.3 Single Responsibility Principle 

Single Responsibility Principle states that every system should have a single well-defined 

responsibility, which is yet another approach towards the modular design of a system. The 

importance of single responsibility is less evident during the initial design and implementation 

phase, but pays off when requirements change and existing systems have to be adapted. If a system 

has multiple responsibilities it is likely that these responsibilities have interdependencies, which 

means that a change to one responsibility might inadvertently have implications for the other 

responsibilities. In other words, systems with multiple responsibilities are more difficult to change 

without unexpected side effects. Unfortunately, just as the case with Separation of Concerns, there is 

no clear definition of what constitutes as a responsibility.   

The software quality metric called cohesion is used to measure the degree of relatedness of a 

software module. Modules that uphold the Single Responsibility Principle will have a high cohesion, 

which is deemed favorable over modules with low cohesion. Figure 12 shows two examples of a 

software system consisting out of nine distinct functions (the inner rectangles). The color of these 

rectangles indicates some distinct responsibility of the function. These nine functions are grouped 

into three distinct modules (the outer rectangles).  



18 
 

  

(a) Low cohesion (b) High cohesion 

Figure 12 - Two examples of cohesion 

The two examples in figure 12 show two different ways of grouping the nine functions. The three 

modules in figure 12(b) are highly cohesive as their underlying functions share the same 

responsibility. The three modules in figure 12(a) show differing degrees of cohesion. The top module 

is the least cohesive as its underlying functions each have a distinct responsibility.  

2.7.4 Single Point of Entry 

Single Point of Entry is the principle whereby a system is accessible in one way and one way only. 

Although this principle is less common than the previous principles, upholding the Single Point of 

Entry principle can be advantageous in various specific cases. For instance, a building which has one 

entrance makes it easier to regulate access to, thus granting a security advantage. Moreover, visitors 

will not be burdened with having to figure out which entrance to use when there is only one entrance  

available. Similarly, large corporations often aggregate their numerous internal web applications 

and knowledge bases into a so-called enterprise portal, thus providing a unified and centralized 

place for all employees to fulfill their information demand. 

2.7.5 Ad-hoc Polymorphism 

Ad-hoc polymorphism is an object-oriented programming feature, which allows the definition of a 

method that is applicable to arguments of different types. A common example is the addition 

operator (+), which can be used on various types of arguments with different end results. For 

numbers, the sum is calculated while for text, the pieces of text are concatenated. Table 1 shows 

several examples of the addition operator being applied to arguments of different types.  

Ad-hoc polymorphism can assist in the design of systems by helping to define more generic 

interfaces. Consider the example of a vending machine. One can choose to pay with cash or with a 

debit card. Although both payment methods are different types of input, they should result in the 

same behavior. Ad-hoc polymorphism helps to abstract from the specific payment methods and 

focus on the generic pattern of behavior. In other words, it assists in separating behavior specific to 

the type of input from the generic behavior which is applicable to all forms of input.  

Description Function Result 

Calculating the sum of two integers 2 + 3 5 

Calculating the sum of two floating point numbers 1.5 + 2.35 3.85 

Concatenating two strings “ab” + “cd” “abcd” 

Concatenating two sets {1,2} + {3,4,5} {1,2,3,4,5} 

Adding one duration of time to another duration of time 1h12m30 + 56m20s 2h08m50s 

Table 1 - Various uses of the addition operator 



19 
 

2.7.6 Information hiding 

Information hiding is a system design principle that allows one to protect the integrity of a system 

by exposing only those parts of the system which may interact with the environment.  In software 

engineering, encapsulation is a programming language feature which can be used as an information 

hiding mechanism. Encapsulation is a well-known object orientation principle, mostly applied on 

classes and methods with the use of keywords such as public or private. These keywords regulate 

access to these classes or methods from other objects. When applied correctly, these objects are 

often referred to as black boxes. 

Information hiding can assist the design of a system by separating the elements which are only of 

interest to the system from the elements which are of interest to the environment of the system. 

Consider the example of the vending machine. The environment should be able to buy products by 

interacting with the vending machine. Thus, the vending machine exposes several functions which 

allow the consumer to input his preference and transfer money. The consumer is not interested in 

how the vending machine is able to retrieve his product or is able to interpret cash. Additionally, the 

user should certainly not be able to influence these behaviors. For example, the consumer should be 

able to see the price of the products, but he should not be able to change the price of t he products. 

From an object-oriented perspective, the variable that denotes the price of the product should be 

publicly accessible for reading, but only privately accessible for writing.  



20 
 

3 Fundamental topics 

The previous chapter introduced the theoretical concepts which we will now use to discuss various 

fundamental topics. These topics will be used in chapter 5 to explain the various issues that are 

currently affecting business process modeling in practice. 

3.1 Natural language versus formal language 

Business process management places great emphasis on the use of models to describe business 

processes and these models must generally adhere to (semi)formal rules. One of the main inhibitors 

of successful business process management is the difficulty various stakeholders encounter in 

creating or interpreting such models [32]. At the same time, if one were to ask such a stakeholder to 

explain what the business process he is trying to model is about, he would have little difficulty 

coming up with an accurate description. How is it that we can more easily describe the real world 

using natural language than using a formal language? 

3.1.1 Experience 

For starters, we all have a tremendous amount of experience and knowledge of natural language. 

From the beginning of our childhood, we are taught to speak and read in one or more natural 

languages. Once we’re capable of using natural language, we use it throughout the rest of our lives, 

increasing our experience and knowledge using natural language as the years pass by. In contrast, 

most formal languages are acquired after adolescence and are only used a fraction of the time we use 

natural languages. 

That being said, basic artificial languages are easier to pick up than natural languages as they are 

considerably less complicated. For example, the decimal system describes ten unique digits and 

arithmetics, the most elementary branch of mathematics, describes four basic operators. Digits and 

arithmetic operators, combined with their semantics, allow one to perform basic calculations. The 

modern Latin alphabet contains 26 letters, but these letters are meaningless until they are combined 

to form words. Yet, even when letters form words, their meaning is still of varying (un)importance. 

Consider the following sentence: “A vheclie epxledod at a plocie cehckipont near the UN 

haduqertares in Bagahdd on Mnoday kilinlg the bmober and an Irqai polcie offceir”. Although the 

letters of the individual words have been jumbled, one is still able to read the sentence with some 

increased effort [33]. The Oxford English Dictionary counts well over 250,000 words and the Kangxi 

dictionary contains close to 50,000 distinct Chinese characters. Although not all these words or 

characters are required to be proficient in their respective language, they do require considerably 

more effort to acquire and retain than artificial languages. 

3.1.2 Syntax, Semantics & Pragmatics 

The differences in syntax, semantics and pragmatics between natural and formal languages makes it 

more difficult to articulate thought in a formal language than in a natural language. Generally 

speaking, syntax describes the valid combinations of the elements of a language while semantics 

describes the meaning of these combinations. In natural language, these elements are words and the 

combinations of these words are sentences. In an artificial language, what these elements and their 

combinations are depends on the type of language. For instance, the elements used in first-order 

logic are the terms and formulas, while their combinations are called expressions. The elements 

used in a modeling language are the graphical constructs, while their combinations are their various 

uses in a diagram.  

While semantics concerns the meaning of language, pragmatics concerns the intended meaning 

of language. This discrepancy in meaning is caused by the context in which the language is used. For 

example, the sentence “I am not angry” implies that the speaker is not angry. However, if the 



21 
 

sentence is uttered with a loud voice and the speaker’s face is red, the intended meaning implies that 

the speaker is very much angry. This example shows that the context in which a language is used can 

lead to a discrepancy between semantic meaning and pragmatic meaning. While this discrepancy is 

part of the way we use natural language, it can lead to misunderstandings, which is a very 

undesirable property in certain fields (e.g. criminal law or mathematics). Formal languages,  such as 

the mathematical notation, do not have this problem as they are completely independent of their 

context. As a result, the semantic meaning and pragmatic meaning of these languages are always 

aligned. 

Modeling languages are also prone to the aforementioned discrepancy between semantics and 

pragmatics. For instance, BPMN prescribes a broad range of constructs one can use to draw a 

business process diagram, but does not include any rules on the positioning of these elements in the 

diagram. However in practice, people tend to layout these elements in a certain direction in order to 

incorporate a natural flow to the diagram. Semantically, the positioning of these elements has no 

meaning, but pragmatically, the positioning helps to place the element on a virtual timeline.  

To conclude, pragmatics is a double-edged sword as it gives people more freedom to express 

themselves at the risk of creating misunderstanding. Formal languages do not suffer from this issue 

as they are context independent, but this also limits their freedom of expressiveness.  

3.1.3 Purpose 

Another factor which can hinder the effectiveness of a formal language is if it is used for the wrong 

purpose. A formal language is an artificial language which means that it was constructed with a 

specific purpose in mind. Problems arise when the purpose of a formal language and the purpose of 

its use in a specific situation are misaligned. 

For instance, all Dutch bank accounts are identified by a unique 9-digit number. These account 

numbers are generally presented as three sequences of two digits and one single sequence of three 

digits, with each sequence being separated by a dot (e.g. 12.34.56.789). This presentation form can 

also be expressed using a regular expression, which is a specification written in a formal language 

with the purpose of matching text: 

[0-9][0-9]\.[0-9][0-9]\.[0-9][0-9]\.[0-9][0-9][0-9] 

However, validation of a Dutch bank account number also involves a mathematical equation called 

the 11-test, which is a test that checks if the weighted sum of all separate digits is a multiple of 11. 

Such a test can easily be expressed in various mathematical notations. Provided that   is a nine-digit 

number and    denotes the ith digit of   then we could describe the weighted sum with the formula: 

                                             

If the result of this formula can be divided by 11 without producing a remainder, the 11-test has 

held. We can generalize this formula to work for numbers with an arbitrary amount of digits and use 

a congruence relation with a modulus to represent that the result should be devisable by 11. In 

addition to the concepts we used in the previous formula, ‖ ‖ is the length of   or in other words, 

the amount of digits present in  , and             is a congruence relation which holds if   ⁄  has 

no remainder. 

∑ ‖ ‖         

‖ ‖

   

            

The 11-test cannot be expressed using regular expressions as these are not designed to perform 

mathematical equations. Regular expressions work well for validating user input with a concise 

structure such as postal codes, phone numbers and e-mail addresses. The Dutch bank account 

example is quite straightforward in differentiating between the purposes of two formal languages 

and software developers would not generally try to perform math with a regular expression.  



22 
 

A more elusive example, which has been a subject of heated debate among software developers, is 

the suitability of regular expressions to process XML or HTML data. There are those who strongly 

oppose the practice as languages such as XML are context-free languages and regular expressions 

are designed to match regular languages [34]. For example, both XML and HTML support the 

nesting of tags to an arbitrary level of depth, which requires a recursive algorithm to parse the data. 

The use of recursion is not supported by regular expressions. However, regular expressions are often 

a more efficient solution than using a XML or HTML parser and there are many developers who 

advocate the use of regular expressions to extract information from XML or HTML data for this very 

reason. 

These examples have shown that even while a formal language is designed for a specific purpose, 

this purpose might not be clear to its users and as a result, a formal language might be used to solve 

a problem it was not designed for. Moreover, there are situations where the suitability of a formal 

language to solve a problem is not clear cut and it becomes a matter of debate whether it is suitable 

or not. The purpose of a regular expression is to match text, but this does not make it appropriate for 

all pieces of text nor is it clear what properties a piece of text should have to warrant the use of 

regular expressions. The same can be said of business process models which aim to describe a 

business process as a sequence of activities. Such a description works well for some business 

processes while in other cases it does not work at all.  

3.1.4 Expressiveness 

Finally, even if a formal language is used for its intended purpose, it may still be difficult to use if it 

does not contain the right constructs to express whatever it is one is trying to represent. Once again, 

we turn to regular expressions for an example. Consider the validation of an identifier which must 

conform to the following constraints:  

1. The identifier must only contain uppercase letters or digits. 

2. The identifier must contain one and only one uppercase letter. 

3. The identifier must be between 9 and 12 characters long. 

The first two constraints can easily be captured by a regular expression such as 

^[0-9]*[A-Z][0-9]*$ 

which can be read as zero or more digits followed by an uppercase letter followed by zero or more 

digits. However, the incorporation of the third constraint into this expression is not straightforward 

as it requires the two blocks that match the digits to be balanced, which is not a feature of regular 

expressions. Since it is not possible to directly express the intent of the third constraint, one has to 

overcome this limitation by using existing features to mimic this intent. An example of such a 

solution is to make all possible combinations explicit: 

^(?:[A-Z]\d{8,11}  |\d[A-Z]\d{7,10}  |\d{2}[A-Z]\d{6,9}|\d{3}[A-Z]\d{5,8}| 

  \d{4}[A-Z]\d{4,7}|\d{5}[A-Z]\d{3,6}|\d{6}[A-Z]\d{2,5}|\d{7}[A-Z]\d{1,4}| 

  \d{8}[A-Z]\d{0,3}|\d{9}[A-Z]\d{0,2}|\d{10}[A-Z]\d?   |\d{11}[A-Z])$ 

This workaround has several obvious drawbacks. The length of the regular expression has sprung 

from 17 to 206 characters, which makes it much more difficult to interpret the meaning of the 

expression. Another drawback is that the maintainability of the expression has been severely 

reduced. If the length of the identifier is ever changed, this expression will require extensive editing 

to incorporate the change at the risk of creating inconsistencies in the expression. Some would argue 

that the creation of this regular expression should be automated to overcome these drawbacks. 

The most sensible solution is to accept that it is unwise to place all three constraints in a single 

regular expression and to find an alternative solution. For instance, two simple regular expressions 

can be used to cover all three constraints. Alternately, if the regular expression is evaluated from a 

programming language, it is most likely a trivial task to incorporate the third constraint in that 

language. 



23 
 

Different business process modeling languages have different degrees of expressiveness. For 

instance, BPMN is far more expressive than regular flowcharts. Thus, someone who creates a 

flowchart might have to invest considerable effort to represent some piece of information which 

could be trivial to represent in BPMN. The theory of ontological expressiveness discussed in 

subsection 2.5.1 can be used to determine the expressiveness of business process modeling 

languages. 

3.2 Ambiguity in languages 

The previous section might have given the impression that natural language is superior to formal 

language. Indeed, the strength of descriptions in natural language is that everyone can more or less 

effortlessly understand them. Unfortunately, the weakness of these descriptions is that everyone 

understands them differently. The explication of knowledge to information and the interpretation of 

information to knowledge are accompanied by a varying degree of noise, as shown in figure 13. This 

noise is a result of the unique characteristics of the individual. We each have our own unique set of 

knowledge and life experiences, which shapes the way we create or interpret information. A person 

who reads a love story will interpret the story differently, depending if he or she has ever been in 

love. 

 

Figure 13 - Transferring knowledge using language 

One of the primary causes of this interpretation bias in language is its inherent ambiguity.  When 

we are aware of this ambiguity, we often employ corrective measures such as a follow-up question: 

‘What do you mean?’ or ‘Can you be more specific?’. However, when we are unaware of this 

ambiguity, we may interpret information and be convinced that we have understood its meaning, 

while in fact, the opposite is true.  

Generally speaking, a piece of information is ambiguous if it can be interpreted in more than one 

way. Of course, given the fact that we all interpret information differently, one might wonder if it is 

possible to truly disambiguate information. We will assume a relaxed stance towards this 

philosophical question, by stating that even if information cannot be truly unambiguous, it can be 

unambiguous enough. In our opinion, information can be considered to be sufficiently 

disambiguated when it no longer leads to significant misunderstandings. 

When we consider the ambiguity of a language, we can discern two types of ambiguity  [35]:  

 Lexical ambiguity, otherwise known as semantic ambiguity, means that a word has two or more 

meanings. For instance, the word bank has various meanings such as a financial establishment or 

the land alongside a river. 

 Structural ambiguity, otherwise known as syntactical ambiguity, means that a sentence has two 

or more meanings. For instance, the sentence ‘Dave took a picture of Jack with a camera ’ can 

either mean that Dave used a camera to take a picture of Jack or that Jack was holding a camera 

while Dave took a picture of him. 

Source 
Knowledge

Information Transfer

Explicating Person Interpreting Person

Target 
Knowledge



24 
 

Although ambiguity has its uses, it is generally perceived to be an undesirable property of 

languages as it can lead to misunderstanding. Politicians are keen in using ambiguous statements to 

avoid answering difficult questions or to avoid taking a specific stance on a subject. Ambiguity is 

specifically unfavorable during logical arguments as ambiguous facts can lead to the inference of 

incorrect conclusions. Formal logic alleviates this problem as it is based on a formal language and is 

thus completely unambiguous. In contrast to natural language, all sentences expressed in a formal 

language have one meaning and one meaning only.  

However, even a seemingly formal language can contain ambiguity. A well-known example in 

computer science is the Dangling Else problem [36]. Consider the following piece of pseudo code: 

IF x IF y ... ELSE ... 

Without the use of parenthesis or some kind of ENDIF closure, it is unclear whether the ELSE 

statement belongs to the first or the second IF statement. 

Considering that business process management involves the collaborative solving of a complex 

problem by various stakeholders, the presence of ambiguity is highly undesirable. As we mentioned 

in the introduction, one of the primary goals of BPM is to create a shared understanding of the way 

work gets done within an organization. Ambiguity directly impedes the achievement of such 

understanding, which is why semi-formal process models play such an important role in BPM. In 

fact, the elimination of ambiguity is mandatory when the goal of the BPM project is to create an 

enactable process model. Computers are by design unable to cope with ambiguity which means that 

for a computer to interpret a process model, it must be designed in a fully formal language. 

3.3 Abstraction 

The use of abstraction plays an important role in business process modeling. People from the field of 

IT are well versed in the use of abstraction. In fact, the evolution of computer hardware and software 

itself can be summarized as a growing stack of layers of abstraction [30]. It began with the creation 

of a logical gate which could perform some basic Boolean logic. Multiple logical gates were created 

and combined to perform simple tasks such as arithmetics and soon enough, the first calculator was 

created. The calculator allows one to perform arithmetics using the decimal system we’re all used to 

while the actual calculation is performed using Boolean logic. However, the user of the calculator is 

not aware of this Boolean logic nor is he required to translate numbers to bits and back. In essence, 

the creators of the calculator have abstracted from the Boolean system present in electrical circuitry 

by adding an arithmetics layer. Contemporary computer software utilizes a large stack of layers of 

abstractions. 

3.3.1 Leaky abstraction 

Unfortunately, all forms of abstraction suffer from a phenomenon called leaky abstraction, which is 

a term coined by Joel Polsky in 2002 to describe the inherent imperfectness of all abstractions [37]. 

Consider the example of the calculator we used in the previous paragraph. The arithmetics layer is 

an abstraction built on top of the CPU which allows one to perform arithmetics using the decimal 

system rather than Boolean logic. In fact, the user does not require any knowledge of the inner 

workings of the calculator. All he expects is that if he hits the keys [5] [+] [3] [=] in order, the result 

[8] will appear on the display. However, at the layer of the CPU these numbers are sequences of bits 

and there is some hardwired limit to how many bits such as sequence may have. A very primitive 16-

bit calculator might be unable to handle any value larger than           . Clearly, characteristics 

present at the CPU layer have consequences at the calculation layer. This phenomenon is called 

leaky abstraction [38]. Someone who is unfamiliar with the characteristics of a binary systems will 

be unable to explain why he is not capable of calculating values larger than 65,536.   



25 
 

3.3.2 Conceptual abstraction vs. Scoping abstraction 

Although the process of abstraction knows many forms, we made our own separation based on the 

manner in which it is applied in modeling: 

 Conceptual abstraction is an information reduction method by which a concept is replaced by a 

more generic concept of a different type. For example, by describing a dog as an animal, one 

abstracts from the properties particular to a dog and leaves only those properties which are 

applicable to all animals. The concept of a dog has effectively been replaced by the concept of an 

animal. This type of abstraction is useful when one is less concerned with the specific details of a 

concept or wants to create multiple levels of abstractions that each describes a different type of 

information. 

 Scoping abstraction is another information reduction method which is performed by replacing 

multiple concepts with a single concept of the same type. Considering the example of the dog, 

when there are many types of dogs it might be convenient to group these types into a new type  of 

dog. In contrast to conceptual abstraction, no new concept is used. This type of abstraction is 

useful when creating overview is important. In conceptual modeling, the process of scoping 

abstraction is often referred to as (de)composition. 

Distinguishing between conceptual abstraction and scoping abstraction will assist in the analysis 

of the application of business process modeling languages in our case study. 

3.4 Application of System Design Principles 

In this section, we will demonstrate the application of the various system design principles we 

discussed in section 2.7 on business process modeling. Not all principles are equally applicable and 

not all principles can be simultaneously applied as various principles conflict with one another. 

These conflicts are of particular interest as they require additional attention by those who are 

designing the business process. We will discuss these conflicts in section 3.5. 

Some BPM research has already paid attention to these principles and we have observed the use 

of these principles in BPM projects, although often under the banner of software design principles 

such as object-orientation [39-41]. The use of system design principles on business process models 

is reasonable as software modules and business processes have several similarities. Business 

processes, as defined by business process models, are sets of activities with measurable triggers and 

results. With this definition in mind, the analogy with a method and its corresponding arguments 

and return-value is easily made.  

The following principles will be applied to business process modeling: Modularity, Separation of 

Concerns, Single Responsibility Principle, Single Point of Entry, Ad-hoc Polymorphism and 

Information hiding. 

3.4.1 Modularity 

The idea of business processes as reusable and maintainable modules is a popular notion [42]. 

Consider any organization that has achieved success by performing some activity. Generally, they 

would want to take that activity and perform it elsewhere, preferably all over the world. In fact, the 

whole idea of hard franchising2 revolves around organizations using an existing successful business 

model rather than developing their own.  

Another advantage of modularity is maintainability, which is also applicable to business 

processes. For instance, if one department reorganizes and changes their way of doing work, it 

would be undesirable if other departments were forced to adapt as well. When a department is 

                                                             
2 A soft franchise is the common type of franchise whereby a business adopts a certain brand but is 
free to manage their organization as they see fit. In contrast, a hard franchise not only includes a 
brand, but a way of work. 



26 
 

designed as a module (e.g. by specifying measurable incomes and outcomes of the department), 

changes within the department can be made without affecting other departments, assuming the 

department does not break the rules of the module.  

Considering that many organizations change their way of work frequently, the creation of 

maintainable and reusable business processes seems desirable and modularity is a way to 

accomplish that. The following two subsections will discuss two system design principles which can 

assist in achieving modular business processes. 

3.4.2 Separation of Concerns 

Separation of Concerns is best known for its role in computer programming, but is applicable in a 

great variety of situations. Edsger W. Dijkstra, who coined the term, argued that Separation of 

Concerns transcends computer programming, or any design discipline for that matter, and stated 

that Separation of Concerns is a fundamental characteristic of all rational thinking. According to 

Dijkstra, Separation of Concerns is the only available technique one has to effectively order one’s 

thoughts [43]. We support his statement and add that this principle is closely related to the use of 

decomposition. While decomposition allows one to divide a system in a set of subsystems, 

Separation of Concerns can be used to guide this division. In other words, combining decomposition 

with Separation of Concerns allows one to create a more meaningful division. 

In business process modeling, Separation of Concerns can be challenging to achieve due to the 

great variety of concerns related to business processes [44]. Consider figure 14(a) which is a 

flowchart depicting a series of activities and decisions. The business process was designed with a 

certain concern in mind and the diagram reflects this concern through the use of color. The 

separation of the elements in the flowchart along these concerns is successful as the different colors 

depict closely related groups of activities and decisions. Furthermore, there are only a few 

relationships between the four groups implying they are loosely coupled which strengthen the 

modularity of the four groups. Figure 14(b) displays the same flowchart as figure 14(a) with the 

colors depicting a different concern. The four colors no longer depict elements that form a logical 

group and thus there appears to be no separation based on this concern.  

The type of concern to separate on depends on the goals of the BPM project. Examples of such 

concerns are: 

 Responsibility. A group of activities is performed by one person, function or organizational 

department. This is a common concern as most organizations are structured around functions 

and departments. 

 Accountable. Similar to responsibility, a person or function is held accountable for the proper 

execution of a group of activities.  

  

(a) Successful separation (b) Failed separation 

Figure 14 - Example of Separation of Concerns in flowcharts 



27 
 

 Result. A group of activities produces a measurable and transferable result. Such a separation is 

of importance when knowledge transfer is important and communication between two parties is 

challenging, slow or expensive. For instance, when a helpdesk ticket is escalated to another 

department, the corresponding helpdesk report is transferred from one department to another. 

The report contains all the relevant information regarding the problem, thus reducing the need 

for employees from both departments to communicate.  

 Automation. A group of activities is either performed by a person, a machine or a combination of 

both. Such a separation is often seen in BPM projects that aim to automate a considerable part of 

an existing business process. 

 Cost. A group of activities has either low, medium or high costs. This separation seems less 

straightforward but has several widely applicable purposes. By placing the low-cost activities at 

the start of the process and pushing the high-cost activities to the end of the process, one can 

delay the cost of a process until it reaches the end. This is a highly desirable property of processes 

that do not necessarily run end-to-end. For instance, service helpdesks have an inexpensive 

employee at the start of the service process, which handles all the common cases. The more 

exotic issues are handled by experienced and expensive employees at the end of the process 

chain. 

 Location. A group of activities is performed at a specific geographical location. 

 Time. A group of activities is performed within a certain timeframe.  

In practice, most of these concerns are related to some degree. Organizational departments 

usually have a defined set of responsibilities that produce some measurable result and reside on a 

single geographical location. The more these concerns are combined, the more well-defined the 

Separation of Concerns will be and the easier it will be to attach consequences to these concerns. Of 

course, this systematic approach towards the structuring of organizations is optimistic as in 

everyday businesses concepts such as responsibilities, departments and functions are quite fuzzy 

and their boundaries tend to be blurry rather than exact. 

3.4.3 Single Responsibility Principle 

As we have seen from our exploration of business process modeling languages in section 2.2, most 

business process modeling languages are based on the notion of an activity: a piece of work 

performed by an employee or computer which in some way contributes to the execution of the 

business process. Single Responsibility Principle dictates that every system should have a single 

well-defined responsibility. When applied to activities, we get a very meaningful and powerful 

principle: Every activity should have a single well-defined responsibility.  

This principle is already incorporated in various business process modeling guidelines, though it 

is not called by this name. For instance, the OTOPOP principle of the Common Reference 

Architecture (CORA) model, states that each Use Case should be performed by one person at one 

place at one time. Although they apply this principle to Use Cases, it is part of their methodology to 

map Use Cases to activities within business processes [45]. On a related note, various research 

attempts have aimed to extract software requirements such as Use Cases from business process 

models [5], [46], [47].  

Consider the example of the ordering process described in figure 9. The process includes a task 

‘Send Invoice’. However, sending an invoice is no trivial matter as an invoice needs to be created and 

reviewed first. These activities are performed by separate individuals, perhaps even in separate 

departments. Thus, the task is converted into a sub-process, which is described in figure 15. In this 

diagram, the first task ‘Create Invoice’ is yet again decomposed into another sub-process, which is 

described in figure 16. This manner of decomposition could continue until the sub-process describes 

actual actions such as ‘Pick up a pen’ or ‘Hit Enter’, but such a level of granularity is pointless. In 

fact, the tasks described in figure 16 are usually found in a work instruction manual, rather than a 

business process model.  



28 
 

 

Figure 15 - BPMN diagram of the 'Send Invoice' sub-process 

 

Figure 16 - BPMN diagram of the 'Create Invoice' sub-process 

3.4.4 Single Point of Entry 

The Single Point of Entry principle can be useful in the 

decomposition of business process models. To illustrate its 

importance, once again consider the decomposition of the first 

activity of the diagram in figure 15 into the diagram in figure 16. 

The use of decomposition works well in this example, as the sub-

process ‘Create Invoice’ has one input and one output, that 

correspond with the single start and end event present in its 

underlying process diagram.  

However, complications would arise if the process depicted in 

figure 16 would have multiple start events as these would need to 

be mapped to an equal number of incoming process flows in the 

parent diagram. This would in turn require some way to 

differentiate between various process flows in order to represent 

which process flow connects to what start event. Such a 

construction is not possible in BPMN.  

To avoid these problems, the BPMN specification states that 

the business process underlying a sub-process must have one 

and only one start event. The same rule does not apply to end 

events, although it is strongly recommended that any additional 

end events be of a specific type such as a message, escalation or 

error event and assigned a distinct label. The parent diagram can 

then represent the consequences of these end events through the use of boundary events.  

To illustrate, Figure 17 shows three different uses of a sub-process. The top two examples are a 

result of attempting to create a sub-process from a tightly coupled set of activities. The bottom 

example is the most meaningful as the sub-process has a single start and end point. Deviations from 

the main process flow are described through the use of Intermediate Boundary Events. 

To conclude, the more process flows cross a sub-process boundary, the less meaningful the 

decomposition is and the harder it is to interpret its use in diagrams. To avoid these problems, 

uphold the Single Point of Entry principle when defining sub-processes. 

Send Invoice

Create Invoice Review Invoice Mail Invoice

Create Invoice

Open Invoice 
Template

Write 
Shipping 
Address

Write Order 
Details

Include Terms 
& Conditions

Fulfill Order

Fulfill Order

Fulfill Order

Order expired

 

Product 
unavailable

7 day 
delay

Figure 17 - Three uses of sub-
processes in BPMN 



29 
 

Handle Call

Read Letter

Read E-Mail

Process 
Complaint

Telephone

Letter

E-Mail

3.4.5 Ad-hoc Polymorphism 

While ad-hoc polymorphism is a programming feature 

rather than a design principle, it can have a particular 

but useful purpose in business process modeling. A 

common pattern in business process modeling is that a 

business process can be started in varying ways.  

Consider the case of a customer who wants to file a 

complaint as shown in figure 18. From the perspective 

of the business, the customer complaint process can 

either be initiated by a complaint via e-mail, telephone 

or letter. In logistics, this is also known as multi 

channeling. Usually, each specific channel has its own 

way to be handled but at some point the manner in 

which the complaint is processed is no longer specific 

to the way the process was started.  

From a process modeling perspective, if one would create a separate process for each channel, 

one would observe considerable overlap between these processes. This is a less than optimal 

solution, because a change in the overlapping part would require a change in all processes. To limit 

this overlap, one could design a single process that incorporates each channel up until the point 

where the process becomes generic for all channels. From a process modeling perspective, this 

would create a process with multiple starting paths which at some point converge and continue on a 

single path, just like the BPMN diagram in figure 18 shows. 

3.4.6 Information hiding 

In business process modeling, information hiding does not seem straightforward to apply. However, 

we argue that information hiding could play a significant role, namely to hide technical details (i.e. 

that information which is only relevant for the formal correctness or enactment of the process 

model) 

One of the three goals of business process management is the creation of executable process 

models with the purpose of providing direct technical support to the business process. This requires 

a computer to be able to interpret a process model in such a manner that the process it describes can 

be executed by the computer. In turn, this requirement means that the process model must be 

described in a formal language as this is the only type of language a computer  is capable of 

processing. Unfortunately, the transformation of a process model which is understandable for 

humans into a process model which is understandable for machines involves the addition of a large 

amount of technical details. These details are meaningful for IT stakeholders who understand their 

intent, but confuse other stakeholders. We argue that for all information in a process model, there 

should be a clear distinction what information concerns the technical implementation and what 

information concerns the actual business logic. Non-IT stakeholders are almost always concerned 

with the latter information. 

Although numerous BPM efforts attempt to avoid incorporating technical details in their 

business process models, there are nearly always choices at the technical level that have 

consequences for the process model [48]. For instance, in many BPM projects, BPMN is used to 

describe a business friendly process model while the technical process model is implemented using 

BPEL. Of course, such a separation introduces a variety of conceptual mapping issues between the 

two models. Indeed, much research has been performed of the mapping of BPMN to BPEL and back 

[49], [50]. At the moment, BPEL appears to be replaced by BPMN 2.0, which is the newest version 

of BPMN and allows for both the description of process models and their enactment.  

  

Figure 18 - BPMN diagram of a customer 
complaint process. 



30 
 

3.5 Conflicting principles 

All principles we have covered can be applied to business process modeling in some desirable way. 

However, some principles inhibit the effectiveness of other principles, which requires the designer of 

the model to make a tradeoff between these principles.  

3.5.1 Separation of Concerns versus Single Responsibility Principle 

Applying both Separation of Concerns and Single Responsibility Principle implies the creation of a 

set of activities that each have a distinct purpose which is not present in the other sets of activities. 

Although this seems to be highly desirable, in most cases it also highly infeasible.  

Consider the following computer programming related example. A content management system 

allows logged in users with the right credentials to perform a variety of tasks such as publishing 

articles. The function that is responsible for checking if a user is logged in can either be placed in the 

module that is responsible for publishing articles or it can be placed in a separate module that is 

responsible for authentication and authorization. In the prior case, Separation of Concerns is 

successful as the article publishing module is able to perform its task of publishing articles without 

any dependencies. However, single responsibility is lost as the module is responsible both for 

publishing an article and checking user credentials. In the latter case, the Single Responsibility 

Principle holds as there are two modules that each have their own distinct purpose. Unfortunately, 

Separation of Concerns is lost as the article publishing module relies on another module to perform 

its task. These tradeoffs occur in the most simple of programs and it is up to the programmer to 

make these choices as there is often no right answer.  

Separation of Concerns results in sets of systems that share as little concerns as possible while 

the Single Responsibility Principle results in a set of systems that each has a single distinct purpose. 

Maintaining both principles becomes harder as the complexity of systems increases. At some point 

the designer will encounter a responsibility that does not belong anywhere. These arbitrary or 

miscellaneous responsibilities are then often grouped in generic systems. For instance, many 

programmers often place arbitrary functions in a Utility class.  

In business process modeling, these tradeoffs can occur as well. For example, emphasizing Single 

Responsibility Principle can lead to process models whereby each activity is executed by a distinct 

employee, at the cost of having more dependencies between employees. This is comparable to 

Frederick Winslow Taylor’s scientific management and his views on manual labor. Taylor argued 

that a complex task such as the manufacturing of an automobile should be reduced to a series of 

atomic tasks that each is executed by a distinct employee [51]. Although this radically increased the 

efficiency of car factories, the high level of interdependencies also means that if an employee is no 

longer available, a certain task in the process chain can no longer be executed, subsequently halting 

the global process. 

In contrast, emphasizing Separation of Concerns can lead to process models that are completely 

independent of each other. To relate to the previous example of the car factory: All laborers are 

capable of building an entire car by themselves. Conceptually, each laborer can be viewed as a small 

car factory. Failure of one employee may lower the throughput of the overall factory, but will not 

completely halt its process. However, the costs of replacing a laborer are extremely high as each new 

laborer must be taught how to build an entire car. 

To conclude, the designer should make his own tradeoff between Separation of Concerns and 

Single Responsibility Principle, depending on the nature of the business process he is trying to 

model. It is not possible to fully support both principles nor is it wise to push either principle to its 

extreme. 

 



31 
 

3.5.2 Single Point of Entry versus Ad-hoc Polymorphism 

The principles of Single Point of Entry and Ad-hoc Polymorphism are in direct conflict with one 

another. The prior emphasizes the importance of creating a single connection between the system 

and its environment, while the latter emphasizes the importance of creating multiple connections. 

Consider the example of a customer complaint process from subsection 3.4.5. Applying Single 

Point of Entry to this process means that the process can only be invoked in one way. In terms of a 

BPMN diagram, the diagram must have one and only one Start Event. Now say we want a customer 

to be able to file a complaint either by e-mail or by telephone. Upholding Single Point of Entry 

means the creation of a second customer complaint process, while Ad-hoc Polymorphism would 

allow the first customer complaint process to be adapted in order to allow both means of invocation.  

Choosing between both options depends on the degree of overlap between both processes. If the 

helpdesk is capable of processing both mail and answering telephone calls, Ad-hoc Polymorphism is 

probably the best choice. However, it might preferable to create two helpdesks, perhaps even in 

distinct locations (e.g. hiring a call center in India), in which case it is better to keep both processes 

separate.  

To conclude, the degree of overlap between two processes can guide the decision whether to 

separate or merge two processes. Figure 19 shows an example of two overlapping business processes 

in a BPMN diagram. The first two activities of both processes are unique, while the last two are the 

same. The greater overlap, the more incentive there is to merge the two processes.  

 

Figure 19 - Overlapping business processes in a BPMN diagram 

OverlapDistinct

A1 B1 C D

A2 B2 C D



32 
 

4 Case study 

We performed a case study of a project involving the elicitation and design of business processes. 

Although the project was not explicitly called a BPM project by its stakeholders, it did exhibit several 

characteristics of a BPM project which were of interest to us, specifically: 

 The goal of the project was to design a new way of work, which falls in line with one of the 

motivators for engaging in BPM. 

 The way of work was to be described using various notations, including flowcharts and BPMN, 

with the goal of creating a shared understanding among all stakeholders. This goal is identical to 

one of the primary goals of business process modeling. 

 There were issues regarding the created diagrams. As our research aims to uncover such 

problems, these were of great interest to our research. 

 Both business type and IT stakeholders were involved in the project. 

This chapter is structured in three parts. First, an outline of the project is provided in order to set 

the context of the project: what stakeholders were involved and what they were trying to achieve. 

Secondly, an analysis of the various business process models used in the project is given. Third ly, 

the results of the analysis are summarized to illustrate which issues related to the modeling of 

business processes played a part in the project. 

4.1 Outline 

The case focuses on a project for the government of a large municipality and was centered on the 

redesign of existing business processes. These processes described services provided by the 

municipality to its citizens. The following three sub chapters give a chronological description of how 

the project progressed. Each chapter focuses on a specific stakeholder, but does so without breaking 

the overall chronological order.  

All information presented here was gathered through the architect stakeholder, which might pose 

a somewhat biased view on the project. The outline of the case and its subsequent  analysis has been 

performed objectively relying on factual data as much as possible. We do not believe that neither the 

architect’s interpretation nor our own has introduced any significant distortion in our analysis. 

4.1.1 The Business 

The initial project focused on the redesign of the business processes of one specific organizational 

unit. A consultancy firm was contracted to analyze the existing process and to design a new and 

improved version. The redesign resulted in a 151 page large document describing the  process as a 

collection of several sub processes. Each sub process was modeled using a basic flowchart like 

notation and each step in the process was then further elaborated using a table template description. 

The document was accepted by the various stakeholders, but as the project moved onward, some 

concerns were raised about the apparent lack of overview. Although the document accurately 

described the various sub processes concerned with the execution of the overall process, it was 

unclear how these sub processes related to each other and there was no clear view of the overall 

process.  

To alleviate these concerns, a large poster was created in collaboration with various stakeholders 

using several workshops that incorporated all the sub processes in one large model. This unified 

process model, also known as the large poster, counted well over two hundred elements, but was 

considered to provide more of an overview than the original document and was thus accepted by the 

various stakeholders. More importantly, the large poster allowed one to easily oversee the 

relationships between the various processes. 



33 
 

4.1.2 The Architect 

Several months later, an architect of a medium-large software development company was contracted 

to create an architectural description of the necessary business, information and technical changes. 

When the architect attempted to grasp what the project was about, he inevitably ended up with the 

large poster that had been created and he raised some concerns about its content. He was mostly 

concerned with the level of detail as both the documents and the large poster were a low-level 

description of the process. According to the architect, the process designs lacked a proper high-level 

description, which concerned the process as a whole. He argued that it would be beneficial to all 

parties involved if such a high-level description were to be created. Furthermore, the architect noted 

that there was no clear definition of some of the notational constructs used in the diagram. In other 

words, the diagram lacked semantics. 

Stakeholders of the large municipality were uneasy to accept these concerns, as they held their 

process designs, such as the large poster, in high regard. The architect understood that it would be 

difficult to get these stakeholders to create a new model, let alone use a different notation or tool. 

However, two new versions of the large poster were created, one using a higher level of description 

with all the low level details hidden and one incorporating both a high and low level description. 

These new models were quite similar to the original model in terms of notation and style, but at a 

conceptual level the new models described a different type of information. Although the 

stakeholders of the large municipality, albeit reluctantly, accepted the new model, the architect 

noticed that in everyday use, most stakeholders still turned to the low-level model for guidance as it 

contained the most detailed description. 

4.1.3 The Technicians 

In a follow-up project, a small software development company was contracted to facilitate the 

development of the information systems which would support the designed business process. 

Despite the fact that it was clear from the very beginning that an information system would need to 

be developed to support the business process, the involvement of an actual IT party was deliberately 

delayed until the design of the business process was finished. One of the requirements of the 

stakeholders of the municipality was that the business process should be independent of a ny 

technical solution. They were concerned that the early involvement of an IT party would jeopardize 

this requirement.  

Requirement analysts of the software development company attempted to use the various 

documents and models as a basis for requirements elicitation, but encountered difficulties in doing 

so. The various versions of the large poster were considered to be overly complicated and lacked the 

information they really needed, such as the input and output of the various activities. As a result, the  

requirements analysts of the software development company decided to create a new model to better 

fit their needs. Unlike the architect, they decided to go with a different modeling methodology and 

used BPMN in combination with a professional process modeling tool. Even though the new model 

was in many ways an improvement over the original designs, it was not accepted by the stakeholders 

of the municipality as they no longer recognized their business processes and argued that the new 

model lacked the overview the original model had. This puzzled the requirements analysts as they 

believed that the new model provided a much better overview of the process through the use of 

decomposition.  

Stakeholders of the municipality also had difficulties understanding the model as they were 

unfamiliar with the notation of BPMN. They explained that the use of a business process modeling 

methodology such as BPMN was discussed during an earlier phase of the project, but was explicitly 

avoided in favor of a light-weight notation that was easier to pick up. 



34 
 

4.2 Model analysis 

An analysis of the aforementioned models was performed with the purpose of assessing what 

information the models represented and how well they represented this information. Several 

concepts will be used in our analysis which will now be defined: 

 A model is a representation of a (part of) reality. Although we will mostly focus on graphical 

representations, a model can consist out of any combination of representations. In the case’s 

project, the graphical representations were often accompanied with documents to provide a more 

in-depth description. We state that the actual model is the combination of the graphical 

representation with the accompanied documents. 

 A view is a single representation of the information contained within a model. The information 

represented in the view is a subset of the information present in the model. Views allow one to 

look at a model from various perspectives, often also referred to as viewpoints. Sometimes, it is 

necessary to create views because the model is too complex to be represented in a single view. In 

other cases, there is only one view in which case one could consider the view and the model to be 

same. Generally speaking, one creates different views on models to satisfy specific needs for 

information of different stakeholders.  

 A diagram is a particular instance of a view which uses a graphical representation (e.g. 

flowcharts). 

 An element is a symbol or object used in the diagram (e.g. rectangles, diamonds or arrows). 

 A construct is a type of element combined with its semantics. For instance, the flowcharting 

technique prescribes an activity-construct and a decision-construct. Each construct has a specific 

meaning and has its own distinct graphical representation. For instance, the activity-construct 

represents some kind of task that should be performed and is presented by a rectangle. When 

related to our definition of elements: Constructs are types and elements are instances of these 

types. 

4.2.1 Large Poster – First Version 

The first object of our analysis was the initial version of the large poster shown in figure 20. The 

poster was created by the stakeholders of the large municipality and represented one of the first 

modeling efforts in the project. Due to the considerable amount of time and money spent on the 

creation of the model, the end result was held in high regard and served as a means to create a 

shared understanding among all the stakeholders. 

The diagram was designed with a basic diagramming program using the notation of a flowchart. 

Besides the usual constructs found in a flowchart such as activities and decisions, the diagram also 

describes the construct of a global process step. This is a collection of activities and decisions that, 

together, indicate a significant piece of work generally performed by a single employee. A global 

process step produces a measurable result which is transferrable to another employee and thus 

serves as an input for other global process steps. The most notable impact of these global process 

steps on the diagram is the abundance of colors used to describe these global process steps. Each 

global process step has its own distinct color, which can also be found in other diagrams and 

documents created throughout the project.  

 



35 
 

 

Figure 20 - First version of the large poster 

Issues 

An analysis into the quality of the diagram revealed a variety of issues.  

Size 

With well over 100 activities and approximately 60 decisions, this diagram is quite large and, given 

our cognitive limitations, is hard for anyone to comprehend at once. In order to understand what is 

going on in the diagram, one would need to start at the detail level and work their way through the 

diagram. The only alleviation is the fact that there are the global process steps which provide a 

manner of composition thus allowing one to view the diagram from a higher level of detail.  

Besides these cognitive implications, the size of the diagram also poses some practical problems. 

Extensive zooming is required to view the diagram on a computer screen and when printed, a 

wallpaper print size of A2 or larger is required to keep the text readable. 

Multiple starting points 

This diagram has four starting points while a proper flowchart should have only a single point of 

entry. Having multiple starting points makes the diagram less deterministic and difficult to navigate, 

which is already hard enough considering its size.  

When we increased the depth of our investigation, we learned that the diagram actually contains 

multiple processes which are interwoven into the diagram. Besides the primary process flow which 

is directly related to the primary goals of the project, there also other process flows which span 

across the various global process steps but serve a different purpose. We argue that a diagram 

should contain only that information which is relevant for the purpose of the diagram and nothing 

else.  

Structure 

Elements are spread seemingly at random and lines cross each other unnecessarily often, which 

make the diagram difficult to interpret. Keeping a diagram neat and tidy makes it easier on the eyes 



36 
 

as well as the mind. Furthermore, a clean diagram promotes a sense of professionalism which, 

considering the importance of this specific diagram, should not be neglected. We argue that a simple 

reordering and realigning of the various concepts would improve the readability of the diagram and 

make the diagram look more organized. This is also a clear-cut case of the importance of tooling. 

Professional modeling tools come with advanced algorithms that can reorder the contents of a 

diagram into a more consistent structure.   

Anti-patterns 

The diagram contains various recurring patterns 

of activities and decisions which seem to describe 

aspects of a process which are difficult to express 

using the limited syntax of flowcharts or are 

otherwise questionable. Consider the two partial 

diagrams as presented in figure 21. 

The top pattern seems similar to the so-called 

busy-waiting technique used in software 

engineering. An activity is used to describe the 

act of waiting for some information to be 

received (e.g. receiving a letter). This activity is 

then followed up with a decision that checks if the information has been received. If s o, the process 

continues on as normal and if not, the process returns back to the waiting state. Clearly, we 

understand what is being described by the pattern but we argue that this does not belong in a 

flowchart and this pattern is a consequence of coping with the limitations of flowcharts. More 

advanced business process modeling languages have constructs that can be used to describe such a 

pattern. For example, BPMN uses Intermediate Message Events to halt a process until a specific 

message is received. 

The bottom pattern contains a redundant element. An activity is used to check if a certain 

condition holds and is followed up with a decision that branches on the result of this decision. We 

understand that the checking of some condition can be described as an activity and might even cost 

considerable effort, but we argue that this check is implicit to the decision construct. The redundant 

activity should either be removed or renamed to describe the actual task that produces the desired 

information required to make the decision. For instance, the decision ‘Day or night?’ could be 

preceded by the activity ‘Check whether it is day or night’, but this would not add much information 

and would leave it up to the person executing the process how this task should be achieved. A 

possible solution is to rename the activity to ‘Check the time’ or ‘Look outside’.  

Domain knowledge 

Many labels that describe the activities and decisions in the diagram contain abbreviations or words 

from a specific domain vocabulary. This isn’t a problem per se, as long as all target users of the 

diagram are familiar with this domain. Besides the used language, we argue that the diagram is 

difficult to understand without the presence of a domain expert, preferably one involved with the 

actual creation of the diagram, to explain what the diagram describes. A possible solution would be 

to use text annotation to add explanatory information to the diagram. 

4.2.2 Large Poster – Second Version 

The architect entered the project sometime after the creation of the first version of the large poster. 

He argued that the old diagram lacked overview and that the introduction of varying levels of 

abstraction would make the diagram more suitable for all involved parties. Thus, a second version 

was created which is shown in figure 22. 

Figure 21 - Two examples of flowchart anti-patterns 

Wait for X Is X ready?

No

Yes

Check if X is 
true

Is X true?



37 
 

 

Figure 22 - Second version of the large poster 

Various conceptual changes have occurred with the creation of this diagram:  

Firstly, the global process steps of the previous diagram are now called work processes, which are 

an ordered set of process steps that are executed within a single organizational unit with the purpose 

of making a specific contribution to the provision of a service towards a citizen, company or 

organization.  

Secondly, the construct called process step has been introduced. A process step is an ordered set 

of activities which can be executed uninterruptedly by one person or machine within a single 

business function. These process steps constitute a new layer of abstraction between the work 

process layer and the activity layer.  In comparison, the second version contains three layers of 

abstraction while the original version only contained two layers.  

These conceptual changes have also led to considerable graphical changes. Rectangles are used to 

group activities and decisions which belong to a specific process step, whereas the color of the 

rectangle indicates what work process it belongs to. While the purpose of color has remained the 

same, it is applied in a different manner. To summarize, the used constructs and their abstraction 

layers are:  

 The flowchart shapes represent the activities and decisions which constitute the first layer of 

abstraction.  

 The rectangles that group the flowchart shapes represent process steps which constitute the 

second the layer of abstraction. 

 The color of the rectangles represents the work processes which constitute the third layer of 

abstraction.  

Issues 

The second version of the large poster has some significant changes over its first version, but most of 

these changes are additions to the diagram rather than modifications of existing elements. In other 

words, the second version can be considered an extension of the first version and as a consequence, 

the issues of the first issue are also present in the second version. In addition, two new issues have 

arisen on which we will now elaborate: 



38 
 

Comprehensibility 

Although the introduction of process steps is a clever way of extending the diagram with a new layer 

of abstraction, we think that it makes the diagram less comprehensible. The more information a 

diagram represents the more daunting it will be to its viewer; up to the point where he or she is 

cognitively overloaded and the additional information obstructs the thought process. We do not 

believe that this is the case, but do argue that a degree of clarity has been lost in when compared to 

the previous version of the large poster. 

Consistency 

The addition of new constructs and other alterations have led to various inconsistencies within the 

diagram. Some constructs are not used in a consistent manner, such as the process terminators 

which are most often drawn outside of the process step rectangle in a neutral color but sometimes 

appear inside the rectangle or have adopted the color of the rectangle. Another example is the legend 

which has been extended with descriptions of the various constructs used in the diagram. The 

extension of this legend is a valuable addition, as it helps viewer to better understand the diagram. 

However, the legend is incomplete because the document construct is missing, which is a less 

popular flowchart construct. 

One of the main aspects of modeling is to lay down a set of conventions before starting and to 

adhere to these conventions during the creation of the model. Such conventions can be anything 

from strict rules as set by a standard (e.g. a decision must have at least two outbound arrows), 

simple guidelines (e.g. try to avoid crossing connector lines as much as possible) or anything the 

modeler introduces on his own (e.g. all activities and decisions must belong to a process step). The 

more a modeler plays by the rules, the more consistent, comprehensible and clear his model will be. 

4.2.3 Large Poster – Third Version 

The third version of the large poster shown in figure 23 was created to serve as yet another 

abstraction of the business process. The instigator of its creation was the architect whom argued that 

the second version contained too much detailed information and lacked a proper top-down view of 

the business process. The third version leaves out the lowest layer of abstraction that was present in 

its predecessors and focuses on the relations between the work processes present at the highest level 

of abstraction. Note that the third version accompanies the second version, but does not replace it. 

Both versions serve a different purpose and consequently fulfill different demands for information. 

This version was reluctantly accepted by the stakeholders of the municipality.  

An investigation was performed on this diagram to find out what changes were made and how 

these changes affected the various stakeholders. 

First and foremost, all elements at the lowest level of detail such as activities, decisions and 

terminators have been collapsed into their corresponding process steps. In essence, the first layer of 

abstraction has been removed, which means that this diagram no longer contains any flowchart 

constructs and thus can no longer be considered a flowchart. By removing this layer, the total 

amount of elements represented in the diagram has been reduced to a quarter of those used in its 

predecessors, which makes the diagram a lot easier to grasp. From a theoretical perspective, the 

removal of the flowchart layer is a clear-cut case of abstraction through information hiding as 

discussed in section 2.6 and subsection 2.7.6. 

Secondly, a new construct, the trigger, has been introduced at the work process level. A trigger is 

a construct used to describe the information flowing from one work process to another. Up until 

now, relationships between two elements were depicted by an arrow, which indicated some kind of 

causal relation, but revealed no further details on the nature of the relationship. As each work 

process concerns a separate organizational department with different employees, some kind of 

information exchange needs to take place when a process instance flows from one work process into 

another.  



39 
 

 

Figure 23 - Third version of the large poster 

The term ‘trigger’ is used to indicate that a quantifiable piece of information (e.g. a document, e -

mail or letter) is responsible for invoking a work process. In the business process modeling 

languages we covered in subchapter 2.1, such a construct is most often referred to as an ‘event’. 

Issues 

An analysis of the third poster was conducted which revealed the following issue: 

Non-deterministic triggers 

Most work processes have a specific process step that serves as the 

point of entry for that work process and this process step usually 

requires a single predetermined type of information. As a result, 

relationships between this work process and other work processes have 

a similar trigger. To save space and reduce redundancy, these 

relationships are depicted using a single trigger in the diagram. 

Although this means that fewer elements are used to achieve the same 

description, it also reduces the clarity of the diagram. In one particular 

case shown in figure 24, a trigger has multiple inbound and outbound 

relationships, which implies that any combination of inbound and 

outbound flows is valid. However, we found that this was not the case.  

4.2.4 BPMN Model 

When the requirements analysts became involved in a follow-up project, they used the various 

existing process designs as a basis for a new model. In contrast to all previous modeling efforts, the 

requirements analysts used a popular business process modeling language (BPMN) in combination 

with a professional business process modeling tool. The end result was a model consisting of a 

collection of diagrams at various levels of detail. Figure 25 shows the diagram at the highest level of 

detail, from which one can navigate to the other diagrams at increasingly lower levels of detail.   

As we mentioned in the outline of the case, the model was rejected by some of the stakeholders of 

the municipality because they longer recognized their business process. Besides the different 

modeling language and style, the most notable change is the use of decomposition, resulting in a set 

of interrelated diagrams rather than one single diagram. 

▒▒▒▒▒▒▒▒▒

Figure 24 - Trigger with 
multiple inbound and 

outbound flows 



40 
 

 

Figure 25 - Root diagram of the BMPN model 

The set of diagrams is built like a tree, with a main diagram at the root of the tree to provide an 

overview of the overall business process. In the root diagram, the distinction between the various 

main business functions is made through the use of so-called group-boxes. Each group-box contains 

one or two sub-processes that represent the business process which fulfills this business function. 

These sub-processes can be expanded, by means of decomposition, to reveal their details.  

Figure 26 shows a tree-view of the set of diagrams and was created to see how the various 

diagrams related to each other. From this view, it is apparent that the height of the tree is four. 

There are five diagrams present at the first depth level of which only one diagram has any 

descendants. This implies that this specific process is more complex than the other four processes 

which makes sense considering this particular process is considered the main process of the five 

processes.  

Issues 

An analysis of the various diagrams was conducted which revealed the following issues: 

Activity-Decision inconsistencies 

The most profound issue discovered were the incorrect use of various basic BPMN concepts. In 

several diagrams, there are one or more activities which actually describe a decision. As a result, 

these activities have two or more outbound control flows and it is not clear which control flow 

should be followed under what condition.  

In another case, a single decision is used to describe two or more decisions. While this makes the 

diagram more compact, it also reduces the clarity of the diagram, because the viewer has to spend 

additional effort in order to unravel the compound decision in his mind. Figure 27 shows two 

examples of these inconsistencies. 

This mix-up of concepts which are fundamental to BPMN, or flowcharts in general, is 

troublesome. However, we must add that although these modeling patterns are incorrect, they are 

still quite understandable for the viewer. Moreover, as we will show in 4.3.3, the BPMN language is 

partially to be blame for these inconsistencies. 



41 
 

  

Figure 26 - Hierarchical view of the various BPMN diagrams 
Figure 27 - Incorrect use of basic BPMN 

constructs 

Simulated process orchestration 

The sub-processes in the root diagram are not connected in a normal BPMN fashion. Instead, a 

construction with group-boxes is used to link one or more sub-processes to a core business function. 

Additionally, arrows are used to represent a causal relationship between these core business 

functions. This construction has pragmatic value as it gives a rudimentary view of the overall process 

flow to its viewers. However, it lacks semantic value as group boxes in BPMN are an annotation 

construct. From a strictly semantic point of view, the root diagram represents a collection of 

unconnected sub-processes. Although the diagram appears to show a causal relationship between 

the various sub-processes, it is unclear what events from one sub-process invoke the other.   

We argue that this root diagram provides no real added value as a BPMN diagram and should 

either be fixed by connecting the various sub-processes in a normal BPMN fashion or be replaced by 

a different type of representation such as a process landscape. 

Lack of common BPMN constructs 

While the model certainly has more expressive power than the large poster, some common BPMN 

concepts are only rarely used. Consider the issue of the Activity-Decision inconsistencies. In BPMN 

diagrams, multiple outbound arrows would usually originate from an Exclusive or Parallel Gateway, 

rather than an activity. However, this common construct is only sparsely used in the BPMN 

diagrams we analyzed. The lack of common BPMN constructs seems somewhat contradictory with 

the intentions of the requirement analysts. They explicitly choose BPMN over flowcharts, since 

flowcharts lacked the expressive power they needed to model the business process. Yet, in their 

application of BPMN, they use only a limited part of the BPMN vocabulary. 

 

Besides these issues, there are some advantages this model has over the large poster. For 

instance, most connectors have been given a description which is only rarely the case in the large 

poster. Although this makes the model a little bulky text-wise, we found that the addition of a 

description in natural language to most elements increases the clarity of the model, thus making it 

easier to understand. The use of some BPMN constructs such as Message Events also more 

accurately indicate what the input or output is of a certain process. Unlike the flowchart based 

posters, the BPMN model is not limited to describing processes as a sequence of activities and 

decisions, but also gives a rudimentary representation of the input and output of these processes. 

▒▒▒▒

▒▒▒▒▒ ▒▒
▒▒▒▒▒▒▒▒

▒▒▒▒▒ ▒▒▒▒▒
▒▒▒▒▒▒▒▒

▒▒▒▒▒
▒▒▒▒▒▒▒▒▒▒ ▒▒▒▒▒ ▒▒▒▒▒

▒▒▒▒▒

▒▒▒▒▒▒▒▒▒▒

▒▒▒▒▒▒▒

▒▒▒▒▒▒▒▒▒▒▒

▒▒▒▒▒▒▒

▒▒▒▒▒

▒▒▒▒▒▒▒▒▒ ▒▒
▒▒▒▒▒▒▒▒

▒▒▒▒▒

▒▒▒▒▒▒
▒▒▒▒▒▒▒▒ ▒▒

▒▒▒▒▒▒▒

Is X true? No, but Y is

No, and neither is Y

Yes

Identify Client

Blacklisted

Already identified



42 
 

4.3 Conclusions 

Based on the analysis of the models of this case, various conclusions can be drawn regarding the use 

of models, the role of different modeling languages and how these relate to the purpose of different 

parties involved with the modeling activity. 

4.3.1 Definition of overview 

There is a conflict of opinion between the stakeholders of the municipality and the requirements 

analysts on what constitutes as an overview. The prior party believes that the original large poster 

provides the best overview while the latter party argues that their BPMN model provides the best 

overview. Two distinct definitions of overview can be inferred from this observation: 

 From the perspective of the stakeholders of the municipality, overview is achieved by creating a 

single representation with a maximal level of detail. They argue that all information should be 

represented in this single model because in this manner no information is left out, thus 

guaranteeing a maximal hold on the process. To abridge, the fact that all information is 

represented in a single location creates the overview. 

 From the perspective of the IT stakeholders, overview is achieved by creating a greatly simplified 

representation with a minimum level of detail. They argue that the human mind is incapable of 

grasping all the little intricacies of the complete business process at once, thus we need to create 

abstractions in order to cope with this complexity. The concepts used in these abstract 

representations are elaborated using other more detailed representations thus allowing one to 

zoom in on a particular part of the business process when needed. To abridge, the fact that there 

is a main model at the highest level of abstraction that contains little or no details creates the 

overview. 

This fundamental difference also carries implications for the way these two parties create 

models: 

 When the stakeholders of the municipality create a model, they start at a maximal level of detail 

and continue to work at this level of detail until they are satisfied that the model contains all the 

relevant information. We call this a bottom-up approach towards modeling. 

 When the IT stakeholders create a model, they start at a minimum level of detail and create 

additional models at an increasing level of detail until they are satisfied that the overall collection 

of models contains all the relevant information. We call this a top-down approach towards 

modeling. 

We must add that in this particular case, the approach of the stakeholders of the municipality can 

be considered bottom-only rather than bottom-up, because their focus mostly remained on the 

details of the business process. It was the architect who emphasized the use of layers of abstractions 

in the large poster. 

Neither approach towards process modeling can be considered better than the other, nor can we 

conclude that a series of interrelated models is better than one large wallpaper-sized diagram. 

However, if the stakeholders of the large municipality prefer one large diagram containing all the 

details, then it should be possible to aggregate the set of diagrams created by the requirements 

analysts into such a diagram. Some professional modeling tools allow the creation of such a 

representation, which is called a wallpaper view, exploded process view or flat process view. The 

use of such a feature would allow both parties to create a useful representation of the business 

process based on a single source of information. In essence, these representations would be different 

views based on one model. Unfortunately, such a feature was not supported by the tools used in this 

case. 

 



43 
 

4.3.2 Suitability of flowcharts 

Some of the issues present in the large poster 

can be traced back to the used modeling 

language: flowcharts. This language was 

explicitly chosen by the stakeholders of the 

municipality due to its ease of use and 

understandability by people whom are 

unfamiliar with business process modeling. We 

agree that from this point of view, a lightweight 

modeling technique is the appropriate choice 

and flowcharts fit this choice well. These types 

of models are easy to draw, understandable for 

novices and are straightforward to 

communicate with.  

The broad applicability of flowcharts makes them appropriate for the modeling of any process 

that involves steps and choices. However, as we mentioned in 2.2.1, the technique itself only 

describes a, very limited, set of constructs without any clear standardized rules on how to use these. 

We argue that this lack of rules is what makes flowcharts such a widely applicable modeling 

language as it leaves plenty of room for its users to be creative and adapt their own style during the 

modeling process. In the case’s flowchart of the large poster, collections of activities and decisions 

are grouped to form so-called work processes, which are represented by colored rectangles. Neither 

the concept of a work process nor the use of colored rectangles – or color for that matter – is 

inherent to the flowcharting technique. These constructs were an invention by the business analysts 

who created the model as they, apparently, found this an adequate way to represent this 

information.  

From the viewpoint of ontological expressivity as discussed in subsection 2.5.1, flowcharts suffer 

from construct deficit, due to the small set of available constructs. This deficiency is somewhat 

alleviated by the business architects who created their own constructs. Moreover, the lack of 

semantics makes it difficult to determine what the existing flowchart constructs describe, which 

seems indicative of construct overload. The lack of semantics grants the user considerable freedom 

of expression, but also constitutes the fallacy of flowcharts: They are too flexible.  

Performing a search query on the word flowchart on the internet gave us access to an abundance 

of flowcharts. The great diversity in the shapes and sizes of these flowcharts strengthens our 

conviction that, while flowcharts are very useful for the description of a wide range of real world 

processes, they lack a solid framework for their creation. We extended our query to an ad-hoc 

analysis in order to see which of these flowcharts were most comprehensible. At a glance, flowcharts 

consisting of no more than 30 concepts with a single starting point and describing nothing but steps 

and decisions provided the best clarity and were most easy to understand. 

The style of the flowchart was also found to be of importance. For instance, some flowcharts gave 

each construct a unique color. Initially, this seems to be redundant as each construct already has a 

distinct shape to differentiate itself from other constructs. However, the addition of color m ade it 

easier to differentiate between various constructs and also made the flowchart more pleasant to look 

at. 

When compared with the issues present in the case’s flowchart, we observe that most of the 

flowcharts found on the internet suffer from one or more of the encountered problems.  Specifically, 

issues regarding the size and structure were present in a multitude of the flowcharts. Without proper 

tooling and use of decomposition, flowcharts can easily grow in unmaintainable and 

incomprehensible diagrams. To conclude, modeling should enable one to cope with the complexity 

of a system, not struggle with it. 

Figure 28 - Combination of flowchart notation and 
colored rectangles 



44 
 

4.3.3 Suitability of BPMN 

An in-depth analysis revealed that the issues found in the BPMN model can be partially traced back 

to deficiencies in the BPMN standard.  

Firstly, it was shown in subsection 4.2.4 that the root diagram was not a conventional BPMN 

diagram and that there was no sense of a single end-to-end business process. Top-level processes 

tend to be very generic business processes which run over a long period of time and involve multiple 

stakeholders and information systems. In contrast, normal BPMN activities are usually performed 

by one stakeholder within a small period of time (e.g. OTOPOP principle from subsection 3.4.3). 

Because BPMN aims to provide representations of business processes at the detail-level, it is less 

suited for describing business processes at the high-level. Although sub-processes allow one to 

decompose a business process, these do not introduce any conceptual changes.  

Secondly, the conceptual overlap between normal BPMN tasks and sub-processes can lead to 

ambiguities. For instance, when we inquired why a certain task in a BPMN diagram had multiple 

outgoing control flows, we learned that the task was actually a ‘to be specified’ sub-process. Tasks 

are allowed to have multiple outgoing control flows, although it is strongly recommended that these 

control flows are labeled to specify under what conditions they are activated. Without these labels, it 

may not be clear how a process instance proceeds after the task has been completed.  

As shown in subsection 3.4.4, decomposition of a task into a sub-process adds additional 

constraints to the sub-process, which can be best satisfied by upholding the Single Point of Entry 

principle. Multiple inbound control flows are not allowed and multiple outbound control flows are 

strongly discouraged for aforementioned reasons.  

4.3.4 Purpose of modeling 

Different stakeholders have different goals when they are modeling [52]. The three versions of the 

large poster from the case are a good example of a clash between different parties with different 

goals. The architect wants to design an information system while the stakeholders of the 

municipality want to redesign a way of doing work. Neither goal will lead to a model which is wrong 

nor would it be wise to pick one goal over the other. Each purpose demands different information 

from the diagram, which subsequently means that either a single diagram should contain all this 

information or many diagrams need to be created, each for a specific purpose. In our case, both 

approaches have been applied as the first version of the large poster led to the creation of two new 

versions. Unfortunately, none of these efforts resulted in a product that satisfied the goals of all 

stakeholders.  

Both approaches have their merits and their pitfalls. It is easier to create and maintain one 

diagram, but each stakeholder will have to place more effort in understanding the diagram. 

Additionally, it might be challenging to choose a notation which is suitable for all stakeholders (e.g. 

flowcharts or BPMN). On the other hand, creating multiple diagrams will more effectively satisfy the 

information demand of all stakeholders, but requires more effort to create all these diagrams. 

Moreover, having multiple diagrams introduces the job of keeping all diagrams in sync. A change in 

one diagram must be properly translated to a change in all other diagrams. Adequate modeling tools 

can assist in maintaining consistency across diagrams. The idea is to create multiple diagrams based 

on a single source of information (a.k.a. views on models principle). In contrast, lack of 

synchronization across diagrams effectively means that there are multiple models. This can lead to a 

state where different stakeholders uphold different versions of the business process, which impedes 

the creation of mutual understanding. 

A complicating factor for business process modeling is that most of the information lies with the 

business stakeholders; in our case, the stakeholders of the municipality. Other parties, such as the 

requirement analysts and the architect, would like to see these stakeholders create the right model 

for them. Of course, it is often hard to provide a convincing argument to these stakeholders why they 

should commit considerable time and effort in something that seemingly does not directly benefit 

them. 



45 
 

4.3.5 Types of abstraction 

The three versions of the large poster were created through the use of conceptual abstraction, which 

we discussed in subsection 3.3.2. The first version of the large poster has two conceptual abstraction 

layers, namely a flowchart layer, describing activities and decisions, and a work process layer, 

describing processes with significant outcomes. The second version separates these two layers with 

the addition of the process step layer, which describes a series of activities that can be executed 

interruptedly by one person. The third version reverts back to two conceptual abstraction layers by 

hiding the flowchart layer. 

The BPMN model was created through the use of scoping abstraction, which we discussed in 

subsection 3.3.2. By using sub-processes, BPMN diagrams are collapsed into activities which in turn 

can be used in other BPMN diagrams. This might seem similar to the third version of the large 

poster, in which all constructs at the flowchart layer have been collapsed into their respective 

process steps. However, in the large poster, each layer of abstraction denotes changes at the 

conceptual layer as constructs on different layers of abstraction have different semantics. In 

contrast, in the BPMN model, each layer of abstraction still uses the same constructs, which is 

indicative of scoping abstraction. In other words, the various versions of the large posters describe 

different types of information, while the various diagrams in the BPMN model describe the same 

type of information. As we discussed in subsection 4.3.3, the lack of conceptual difference between 

BPMN diagrams impedes the design of an appropriate end-to-end process in the root diagram.  

To conclude, scoping abstraction is useful for decomposing a large business process, while 

conceptual abstraction is useful for creating a meaningful process hierarchy. The latter form of 

abstraction will lead to a more meaningful decomposition, but also demands more effort from the 

modeler to achieve. In contrast, scoping abstraction is straightforward to apply and could even be 

performed by a computer. 

 



46 
 

5 General issues 

A series of generic issues that inhibit the effective use of business process models can be extracted 

from the findings of our research and case analysis. Other research which has aimed to achieve 

similar goals has identified one or more of the issues we found, strengthening the confidence in our 

findings [3]. For each issue, we attempt to explain its cause with the theories discussed in chapter 2 

and chapter 3. 

5.1 Conflicting mindsets of involved stakeholders 

We already mentioned that business and IT stakeholders differ greatly, even going so far as to claim 

that they speak different languages or live in separate worlds. One of the fundamental causes of this 

separation is the two distinct mindsets of these two groups of stakeholders, which are the result of 

grossly different educational backgrounds and interests [19]. These differing mindsets also have 

their implications in the manner of which these two parties create, interpret and experience models.  

For example, consider the use of written text versus the use of diagrams to represent information. 

Given the choice, business stakeholders most often prefer written text over diagrams as written text, 

in their view, is easier to use and leads to more concrete descriptions. In contrast, diagrams are 

often perceived as being too abstract. The more formal a graphical representation of a model is, the 

more it will look and feel like a mathematical equation and the more likely the business stakeholder 

will lose interest. Another, more extreme, example are jurists who tend to over appreciate written 

text and their perception of text, be it a legal text or the description on a milk carton, is very 

different from other people. They will hold a much greater value on text and be much more critical 

of its contents.  

The exact opposite is the case with IT stakeholders as they tend to have an aversion for written 

text and appreciate graphical representations. Software documentation, especially those documents 

concerning the technical architecture of an application, contain numerous diagrams such as class 

diagrams, sequence diagrams, activity diagrams, state diagrams, use case diagrams and so on. To 

generalize, if an IT stakeholder can replace a piece of text with a diagram, he will often be inclined to 

do so, as he considers written text to be ambiguous, redundant and inefficient [53]. 

The use of written text versus the use of diagrams can be mapped to our discussion of natural 

language versus artificial language in section 3.1. Natural language is the language most people are 

comfortable with, whereas artificial languages are only used by a minority of people. IT stakeholders 

are usually well experienced with the use of artificial languages while business stakeholders are not. 

This issue can be mitigated by adding descriptions in natural language to diagrams. From the 

perspective of formal modeling languages, text annotation constructs carry little semantic value. Yet, 

they can have considerable pragmatic value in terms of making the diagram more understandable 

for business stakeholders. 

To conclude, the differences in mindsets between business and IT stakeholders can inhibit the 

effective use of models. Business process diagrams should balance the use of natural text and 

graphical modeling constructs in order to create a model that is understandable to both 

stakeholders. 

5.2 Conflicting goals of business process modeling 

As mentioned in the introduction, business process models can be created to describe, analyze or 

enact business processes. However, these three goals pose a conflict by themselves. Creating a 

shared understanding of business processes emphasizes the need for a clear and intuitive modeling 

language. All types of stakeholders should be able use such a modeling language to create or 

interpret business process models.  In contrast, creating computer executable business processes 



47 
 

emphasizes the need for a formal modeling language with additional formal semantics of its 

execution. 

As discussed in section 3.1, it is easier for most people to describe something in natural language 

than in formal language. Yet, as shown in section 3.2, computers are unable to cope with the 

ambiguities of natural language. Thus, creating understandable models impedes the creation of 

executable models and vice versa. 

Executable models must adhere to the formal syntax and semantics of the used modeling 

language. This level of formality considerably constrains the expressiveness of the modeling 

language and can lead to changes in the model that seem quaint to business stakeholders.  

Moreover, these rigorous constraints can be experienced as a nuisance by stakeholders who do not 

understand their importance. The modeling activity is reduced to a game of adapting models to fit 

the alleged limitations of the modeling language. While these constraints can lead to considerable 

changes in the model, these changes are not actually translated to the real world business processes. 

In essence, the end result is a model which poorly reflects reality and means little for the creation of 

shared understanding between business and IT stakeholders. 

To conclude, the three goals of business process modeling are partially incompatible and 

attempting to fulfill two or all three goals may lead to a model that does neither well. 

5.3 Fallacy of imperative reductionism 

Although there are many different dimensions to a business process, most business process 

methodologies assume an imperative approach towards the description of business processes.  

Indeed, the aim of business process modeling languages such as BPMN, EPC and RAD is to allow 

stakeholders to create a model of the business process in terms of a series of tasks. In other words, 

the shared ideology of all these languages is that a business process can be reduced to a sequence of 

activities. Such an approach works well for processes consisting of distinct activities in a specific 

logical order (e.g. the behavior of an ATM machine or the process chain of a car factory).  

Unfortunately, real world business processes can be volatile, unpredictable and perhaps most 

importantly: unordered [54]. Consider a soccer match as a business process. The process involves a 

predefined set of stakeholders, that each has one or more assigned functions. There is shared 

understanding between the stakeholders on what goal should be achieved and all stakeholders will 

contribute in some way to the achievement of this goal. A set of constraints is in place that limits the 

stakeholders in how they can achieve their goals and finally there are metrics in place to check if the 

goals have been reached.  

Although all this information is known, it would still be difficult to capture the actual process of 

the soccer match in a flowchart or BPMN model. The imperative nature of these methodologies 

forces the modeler to not only specify what the process is, but also how it is executed. As we 

discussed in subsection 3.1.3, problems can occur when the purpose of the modeling language and 

its actual use are misaligned. All the information provided by the soccer match example relates to 

what the process is, but reveals no details on how it should be performed. This makes sense as each 

soccer match is unique and the activities performed in its process are chaotic and unordered. 

Attempting to create a representation of this process as a sequence of activities and decisions will 

lead to an over specification of the process, resulting in a rigid design that poorly matches reality  

[55], [56]. 

In contrast, declarative languages attempt to tackle this issue by allowing programmers to specify 

what the program should accomplish without having to specify how it should do this. Unfortunately, 

the development of declarative business process models is still in its early stages [57]. Alternately, 

one can use a modeling language that does not specify temporal sequences (i.e. IDEF0).  

To conclude, unordered business processes are not suitable to be represented in an imperative 

process language and any modeling effort that aims to capture such a process in an imperative 

modeling language will result in a model that inadequately reflects reality.  



48 
 

5.4 Novice modelers versus expert modelers 

Business process modeling places considerable demands on its users. Ideally, its users should have 

knowledge of business process management, business process modeling methodologies and 

supportive modeling tools. Moreover, good abstraction and conceptualization skills will help these 

users to translate the real world into adequate conceptual representations.  

In practice, these demands are rarely met by the people involved in the business process 

modeling activity. This is not at all surprising as BPM projects involve stakeholders from a variety of 

disciplines, most of which are not concerned with conceptual modeling. As a consequence, two types 

of modelers are involved with the design of the process model [58]: 

 Novice modelers, whom are inexperienced users of process modeling methodologies and tooling. 

Business stakeholders can generally be considered to belong to this group. 

 Expert modelers, whom are experienced users of process modeling methodologies and tooling. 

Business process analysts and IT stakeholders can generally be considered to belong to this 

group. IT stakeholders represent a unique group of modelers as their IT-background 

incorporates modeling. 

A process modeler will adapt a different approach depending on whether he or she is a novice 

modeler or an expert modeler:  

 Novice modelers tend to prefer lightweight modeling methodologies such as flowcharts, while 

expert modelers tend to prefer mature business process modeling methodologies such as BPMN 

or EPC. When a novice modeler uses BPMN, he or she will have a tendency to only use the most 

common BPMN constructs. In contrast, expert modelers use a much larger part of the set of 

BPMN constructs [18]. 

 Novice modelers tend to prefer user-friendly modeling tools, which allow them to create a model 

right away. These tools include the use of whiteboards and pen and paper. Expert modelers tend 

to prefer elaborate modeling software. 

 Expert modelers are comfortable with handling large and complex models, while novice modelers 

are not so.  

To conclude, stakeholders can be divided in two groups, namely novice modelers and expert 

modelers. Each group takes a different approach towards the creation and interpretation of business 

process models.  

5.5 Quality of abstraction 

Bad abstractions in business process modeling can be particularly dangerous as they are not 

straightforward to detect, promote an inefficient approach towards understanding business 

processes and can ultimately lead to inadequate process designs. Any problem solving strategy 

involves a degree of abstraction with more complex problems generally requiring higher levels of 

abstraction to be solved. In the corporate world, where both cost and time are a valuable commodity, 

employees are more inclined to pick the less efficient but straightforward solution over the proper 

solution which takes more time to think out.  

Consider the application of conceptual abstraction as discussed in subsection 3.3.2. When 

applied, a detailed business process can be generalized into several layers of abstraction, each new 

layer more generic than the last. The layers used in the case (i.e. work processes, process steps and 

actions) are a common way of abstracting from detailed work instructions to generic goals of the 

organization, which is a sensible approach towards understanding a business process. An example of 

a less sensible approach is to generalize activities based on their location. While this may be useful 

in creating an overview of what happens where, using it as a criterion for conceptual abstraction can 

lead to a rigid design of business processes.  



49 
 

Additionally, having many levels of abstraction does not guarantee a good solution. Each level of 

abstraction forms a barrier one has to cross using their intellect and ability to give meaning to 

abstract concepts. Having many levels of abstraction may pose advantageous to those able to grasp 

all these levels, but can also severely inhibit comprehensibility of the model when others are unable 

to reach this level of abstraction.  

For example, software developers are keen problem solvers and often enjoy creating good 

abstractions. Unfortunately, these thinkers may also get lost in their struggle to find the most 

beautiful and optimal abstraction. Efforts that attempt to create an abstraction that encompasses 

everything usually end up with designs that are too broad to be applicable. 

To conclude, models that suffer from bad abstraction tend to be correct models as they obey all 

the rules as laid out by the modeling language, but they capture the actual business process in a non-

straightforward manner. 

5.6 Scientific approach versus business approach 

As we mentioned in the introduction, BPM has received much attention from both the scientific 

community and the corporate world. It should come as no surprise that both fields take a radically 

different approach towards the subject.  

Business process modeling languages created by the scientific community tend to be based on 

mathematical notation and formal language. An example of such a language is Petri Net. These 

languages enable one to describe business processes in a formalized manner, which can 

subsequently be mathematically analyzed or interpreted by a computer. As we discussed in 3.1, 

formal languages are less straightforward in use than natural language. Additionally, business 

stakeholders generally lack the appropriate expertise required to use formal languages. As a result, 

these languages are experienced as being too difficult to use and are thus deemed unsuitable for use 

in practice [59]. 

Business process modeling languages created by the corporate world tend to be based on 

practical experience with business processes and the necessity for such a language to arise. 

Examples of such languages are RAD and IDEF. These languages are created with their practical 

application in mind, but tend to lack the formality of the ones created by the academic world. As 

such, these languages are suitable for creating models to achieve shared understanding among all 

stakeholders, but less suitable for mathematical analysis or computer interpretation.  

Although it would be cliché to conclude that scientific endeavors result in solutions that lack 

practical value, we do believe that the scientific community should place more emphasis on topics 

such as effective knowledge representation and conceptual modeling when constructing business 

process modeling languages. 

5.7 Lack of standard business process modeling language 

As shown in section 2.2, there are various business process modeling languages and they all take a 

unique approach towards the creation of business process models. Some languages emphasize 

expressiveness by presenting a broad range of constructs, but lack clear guidelines on how to apply 

these constructs. Other languages have a limited set of constructs, but incorporate a level of 

formality, thus limiting ambiguity and enabling computer interpretation. Some languages emphasize 

the creation of business understandable models, while others emphasize the creation of computer 

executable models.  

None of these approaches can be deemed incorrect, nor is it straightforward to deduce that one 

language is more suitable for business process modeling than another. The fact that there are 

numerous business process modeling languages indicate to some extent that it is challenging to 

create a one shoe fits all language. Yet, the lack of a single concise standard makes it difficult for 

practitioners to pick the right methodology and hinders the development of business process 



50 
 

management on the whole. In practice, it is common for BPM projects to use two or more business 

process modeling languages [52]. 

At the time of writing, it would seem that BPMN is the best candidate at becoming the standard 

for business process modeling. While we support the creation of this standard, we must point out 

that BPMN takes a specific direction towards business process modeling which may result in models 

that are not suitable for business stakeholders in a BPM project. We will elaborate this major 

deficiency in section 5.9.  

To conclude, a complete and well documented business process modeling standard will help 

modelers capture the relevant details of a business process in a concise and systematic manner. 

5.8 Lack of adequate tool support 

The use of proper tooling is of particular importance with business process modeling as these 

models tend to contain a vast amount of information and serve a multitude of purposes including 

description, analysis and enactment. Unfortunately, current professional process modeling tools 

tend to be elaborate diagram drawing tools rather than actual model creation tools.  

For example, a common problem we encountered with the use of process modeling tools is the 

support for viewing a model at different levels of abstraction. Business process models tend to grow 

rapidly, both in size and in diversity of information, yet most process modeling tools only have 

primitive ways for coping with these large models. In many BPM projects, including the ones of our 

case, the center of attention is a wallpaper size diagram that contains all the information. Such a 

large diagram may have its uses, but also poses several problems, which we mentioned in 4.2.1. 

Given that business process modeling is supposed to reduce complexity and increase understanding, 

modeling tools should support these goals. Large process models are a fact of most BPM projects 

and tools should enable users to manage them, rather than struggle with them. 

Model validation is another example of a feature which current process modeling tools could 

improve on. Process modeling languages such as BPMN are endowed with semi-formal semantics, 

which means that they can at least be partially validated by a computer algorithm. Although several 

process modeling tools we have used support this feature, they do so modestly as they are limited to 

detecting only the most obvious errors (e.g. unconnected or unlabeled elements). 

The features we discussed in the previous paragraphs are present in only the most advanced 

modeling tools, which are aimed at the IT stakeholders. While these tools can be very powerful, they 

are also quite unsuitable for business stakeholders as they tend to be overloaded with buttons, 

toolbars, menus and windows. Considering that business process modeling concerns both business 

and IT stakeholders, we argue that the supportive tools should be usable by both parties. In other 

words, the lack of tool support can also be interpreted as the lack of user-friendly tool support.  

Finally, various process modeling tools interpret standards such as BPMN differently. Arguably, 

this is a consequence of ambiguity and incompleteness of the BPMN specification. As business 

process modeling standards such as BPMN become more popular and the amount of supporting 

tools increases, the importance of a clear and unambiguous standard increases as well. Consider the 

history of standards-compliance of web browsers such as Internet Explorer, Firefox and Safari, the 

great browser war and how this impacted the world of web-design. We would not like to see this 

history repeat itself with business process modeling standards and its supportive tools.  

To conclude, modeling tools cannot check whether a model reflects reality, but they can validate a 

model against the syntactic and semantic rules of the used modeling language. 

5.9 Presence of technical details in business process models 

Business stakeholders use common sense notions of behavior and time and do not think 

computationally. Fundamental principles from the field of computer science, such as parallelism 

and concurrency, are unknown to these stakeholders and any choices made during the business 

process design phase that concerns these principles will seem strange to them.  



51 
 

 

Figure 29 - Specification of BPMN 2.0 Collaboration Diagram. Reprinted from the “Berliner BPM-Offensive”  

Although some of these principles may be explained using business friendly analogies, most of 

these principles remain difficult to understand without a computer science background. If the idea 

of business process modeling is to empower the business stakeholders, then these methodologies 

should adhere to the expertise of the business. Yet, most business process modeling languages 

shown in section 2.2 are littered with technical terminology (e.g. AND/OR/XOR-gates). Although 

executable process model languages try to abstract from the technical details, they do so poorly and 

choices made at the technical level often have consequences for models at the business level. This is 

an unavoidable consequence of the principle of leaky abstraction, which we discussed in 3.3.1. 

At the time of writing, BPMN 2.0 has just been released. A quick study of its new features  shown 

in figure 29 reveals that the focus has been placed on adding more detail to the specification in order 

to make the models more suitable for execution. This is great news for the IT stakeholders who are 

concerned with the technical support of BPM projects, but means little for the business stakeholders 

who should be in charge of the actual design of the model. In fact, we believe that this development 

of BPMN makes the standard less suitable for the business stakeholders. We argue that if BPMN 

continues on this road, it will become a visual programming language and business ownership of 

BPMN models will be lost. Business stakeholders might still create initial versions of their processes, 

but IT will be burdened with the task of fixing these models until they are executable, at which point 

the business stakeholders will no longer understand the models. To summarize, the whole notion of 

collaborative process modeling is effectively lost.  

We believe that the BPMN standard should at the very least make a distinction between 

information related to the execution of a model and the information not related to the execution of 

the model. The prior type of information is of a technical nature and has little to do with the actual 

business logic contained within the model. The principle of information hiding discussed in 3.4.6 

can play a crucial role in achieving this separation. Technical details that make a process model 

executable are only of interest for IT stakeholders who want to enact the model, but these details will 

most likely confuse all other stakeholders. The unfortunate truth is that the technical details might 

have significant implications for the process models and thus for the business stakeholders, which 

brings us right back to the original problem of business-IT alignment as discussed in 2.3. 

To conclude, technical details present in business process models tend to distract its viewers 

from that which these models are trying to capture; the business process. 

Pool (Collapsed)
P
o
o
l
(E
x
p
a
n
d
e
d
)

L
a
n
e

L
a
n
e

Collection

Ad-hoc Sub-Process

Task

Task

~

Message

Start Event

Message Flow

Data Object

Collapsed

Sub-Process

Event-based

Gateway

Escalation

End Event

Timer

Intermediate

Event

Receive Task

Attached

Intermediate

Timer Event

Link

Intermediate

Event

Manual Task

End

Event

Data

Store

Link

Intermediate

Event

Parallel

Multiple

Intermediate

Event

Text Annotation

Group

Multi Instance

Task (Parallel)

Message

End Event

Send Task

Parallel

Gateway

Exclusive

Gateway

Attached

Intermediate

Error Event

Signal

End

Event

Call Activity

Sub-Process

Event Sub-Process

Conditional

Start Event

Error End

Event

Start

Event

End

Event

Looped

Sub-Process

condition



52 
 

5.10 False expectations of BPM projects 

Business process reengineering, software selection, software development, customizing of standard 

software, workflow specification, simulation, animation, human resource planning, activity-based 

costing, project management, knowledge management, benchmarking, certification, continuous 

process management [60]. These are all motivators for engaging in BPM and with this growing list 

of goals the expectations of BPM grows with it. 

Popular strategic goals associated with BPM are continuous process improvement, 

transformational gains, incremental gains and substantial benefits. These vague yet catchy terms 

give the impression that by doing BPM, employees will become more productive, costs lowered, risk 

reduced and control increased. Although these are all possible outcomes of a BPM project, they are 

by no means straightforward to achieve. Unfortunately, many BPM projects are launched without 

first determining the goals of the project, creating a clear strategic agenda and determining what 

processes will be targeted. As a result, these projects often fail to deliver a desirable outcome and 

BPM is falsely accused of being inadequate. 

Business process modeling is also a victim of false expectations. BPMN, for instance, is often 

portrayed as a solution while in essence it is only a tool to help people map their business processes. 

Whether an actual advantage is achieved relies on a great variety of factors that have nothing to do 

with the BPMN standard. As we mentioned in 2.1, the modeling activity is only one part of the 

complete BPM life cycle. Without proper change management, the created models of ‘to-be’ business 

processes will remain elaborate drawings rather than becoming blueprints for real world business 

processes.  

Another false expectation of process modeling is that one model can fulfill all three goals of 

process modeling (e.g. description, analysis and execution). Executable process models contain a 

large amount of details regarding the technical implementation, often obscuring that information 

which is relevant to business. In contrast, business-friendly process models are usually created in a 

non-formal modeling language and are therefore unsuitable for process simulation or enactment. As 

we already discussed in section 5.2, attempting to achieve all these goals with one model is by no 

means straightforward.  

To conclude, false expectations lead to models being created for all the wrong reasons. 



53 
 

6 Discussion & Future Work 

When we consider our list of general issues, their causes and possible solutions, we must recognize 

that some of these issues can be difficult to solve, due to numerous practical concerns. Time and 

money are significant constraints in any real world business projects. To propose that the lack of 

knowledge of BPM could be solved by placing all stakeholders on a 3 week modeling course is well 

meant, but unrealistic. Likewise, the lack of adequate tooling support can be leveraged by acquiring 

professional and feature rich BPM software, but only if such an acquisition fits the budget of the 

project. Considering the cost of professional BPM suites, small BPM projects are unlikely to invest in 

such software. 

Our research has been of a theoretical nature with most conclusions being based on reason rather 

than practice. As such, the validity of our research is somewhat indeterminate due its lack of proper 

grounding in practice. It is for this reason why we have restricted ourselves to describing problems, 

rather than formulating definite solutions. Although at times we have suggested potential solutions 

to certain problems, we must emphasize that these should be interpreted as suggestions. Despite the 

fact that we do not provide any answers to these problems, we do believe that our findings can 

contribute to those involved in BPM projects. We hope to make the reader aware of certain issues 

which can arise in BPM projects and why they arise. Though, it is up to the reader how he or she will 

deal with these issues. 

While the topic of BPM has already received considerable attention from the research 

community, we argue that much remains unquestioned, due to the monotonicity of this research. 

This is a consequence of the fact that the greater part of this research originates from the computer 

science discipline. Considering that the ‘business management’ is part of the BPM acronym, 

common sense would say that business oriented disciplines such as business administration should 

play a much more significant part in the advancement of BPM. Ultimately, we believe that it should 

be these disciplines that determine what information a business process model should describe, 

whereas the computer science discipline should be focused on delivering the technical support.  

Moreover, disciplines such as cognition sciences could provide valuable insight into how this 

information should be represented. 

Finally, even though BPM is a profoundly technology driven discipline, there still remains much 

work to be achieved in the development of BPM software, specifically the development of modeling 

tools. As we have shown in this thesis, principles such as decomposition and views-on-models are 

instrumental in the representation of complex and information rich models. Modeling tools should 

assist the user in the application of these principles. However, modeling tools which are currently 

available on the market only do so modestly. Instead, vendors of these modeling tools tend to 

emphasize features which have little to do with modeling, such as interoperability with other 

software solutions.  



54 
 

7 Conclusion 

In this thesis, we have attempted to assess whether business process modeling can serve as a 

common language between business and IT stakeholders. We have explored the numerous business 

process modeling languages and their application, shown the differences between natural language 

and artificial language and substantiated that system design principles can guide the design of 

business processes. Moreover, we have revealed a series of issues currently affecting business 

process modeling activities and exposed their causes based on the theories we’ve discussed. In the 

upcoming final paragraphs of this thesis, we will reinforce those results from our research which we 

deemed most important. 

First and foremost, similar to the existence of the great divide between business and IT 

stakeholders, there exists a great divide between designing business processes and automating 

business processes. Both activities involve business process modeling, but place fundamenta lly 

different demands on what information the model should describe and how it should describe this 

information. Designing business processes emphasizes stakeholder collaboration and creating a 

shared understanding of the ‘as-is’ and ‘to-be’ processes. The model should embrace these goals by 

representing the business process in a manner which is comprehensible to all stakeholders. This is 

best achieved by using a modeling language with a limited vocabulary in combination with text 

annotation in natural language. On the flip side, automating business processes emphasizes the 

connection between computer applications and the business process in order to cause computers to 

exert the desired behavior. The model should embrace this goal by representing the business process 

in a manner which can be interpreted by a computer.  This is best achieved by using a formal 

modeling language and adhering to the technical constraints imposed by a computer environment.  

Secondly, business process management remains an IT-driven discipline and as a result has left 

its distinct mark on the underlying discipline of business process modeling. The current standard for 

business process modeling, BPMN, is gradually becoming a more IT-oriented modeling language. 

This trend makes business process modeling a more powerful technique for IT stakeholders, at the 

cost of making it less suitable for business stakeholders. Computer programming, formal logic and 

mathematics are skills, which are uncommon among business stakeholders, but we have shown to be 

essential in the application of formal modeling techniques. In other words, programming with 

diagrams rather than text remains programming none the less and does not constitute a viable 

solution for business stakeholders.  

Has business process modeling successfully bridged the business-IT divide? Hardly. But its 

technology has succeeded in providing a user-friendly programming interface. Just as ‘what you see 

is what you get’ interfaces allows computer novices to build websites without knowledge of HTML, 

CSS and JavaScript, BPM technology might be the first step to the more generic ‘what you want is 

what you get’ interface, which allows computer novices to get their computer to exert a certain 

behavior. 

In conclusion, we would like to share our view on the importance of modeling in general. While 

most people see modeling as the process of drawing elaborate diagrams, we see modeling as a 

structured problem solving strategy and as a means to cope with complexity. Looking back at the 

advancements the human race has made in the past one hundred years, we observe a trend whereby 

the complexity of many systems has increased exponentially. Thirty years ago, it was common for a 

consumer to repair his own washing machine or car. This was made possible due to the limited 

complexity of these systems, allowing those with a basic understanding of electrotechnics or 

automotive engineering to perform such repairs. Nowadays, the complexity of these machines has 

increased manifold and as a consequence, the knowledge required to repair these systems has 

increased with it. This demand for knowledge has been partially leveraged by improvements made in 

our educational system and the vast amount of easily accessible information on the Internet.  



55 
 

Unfortunately, there is a limit to the knowledge we can contain, whereas the complexity of a 

system can be potentially boundless.  Thus, we need to invent new and improved ways to handle the 

increasing complexity of systems and we believe that modeling could play an instrumental pa rt in 

achieving this goal. 



56 
 

8 Literature 

[1] C. Pettey, “Gartner Announces Winners of the 2011 BPM Excellence Awards,” 2011. [Online]. 
Available: http://www.gartner.com/it/page.jsp?id=1588516. [Accessed: 12-Jun-2011]. 

[2] S. Biazzo, “A critical examination of the business process re-engineering phenomenon,” 
International Journal of Operations & Production Management, vol. 18, no. 9/10, pp. 1000-
1016, 1998. 

[3] W. Bandara, M. Indulska, S. Chong, and S. Sadiq, “Major issues in business process 
management: an expert perspective,” European Council of International Schools, vol. 2007, 
pp. 1240-1251, 2007. 

[4] M. A. Ould, Business processes: modelling and analysis for re-engineering and improvement. 
John Wiley & Sons, 1995, p. 224. 

[5] E. Cardoso, J. P. a Almeida, and G. Guizzardi, “Requirements engineering based on business 
process models: A case study,” 2009 13th Enterprise Distributed Object Computing Conference 
Workshops, pp. 320-327, Sep. 2009. 

[6] M. Dumas and W. M. P. van der Aalst, “Process-aware information systems,” 2005. 

[7] R. Aguilarsaven, “Business process modelling: Review and framework,” International Journal 
of Production Economics, vol. 90, no. 2, pp. 129-149, Jul. 2004. 

[8] H. Mili et al., “Business process modeling languages: Sorting through the alphabet soup,” ACM 
Computing Surveys, vol. 43, no. 1, pp. 1-56, Nov. 2010. 

[9] E. Sivaraman and M. Kamath, “On the use of Petri nets for business process modeling,” 
Proceeding of the 11th Annual Industrial Engineering. 

[10] R. M. Dijkman and M. Dumas, “Formal semantics and analysis of BPMN process models using 
Petri nets,” Queensland University of, pp. 1-30, 2007. 

[11] M. Dumas, A. Grosskopf, T. Hettel, and M. Wynn, “Semantics of Standard Process Models with 
OR-Joins,” On The Move, pp. 41-58, 2007. 

[12] N. Russell, W. M. P. van der Aalst, A. H. M. ter Hofstede, and P. Wohed, “On the suitability of 
UML 2.0 activity diagrams for business process modelling,” in Proceedings of the 3rd Asia-
Pacific conference on Conceptual modelling-Volume 53, 2006, vol. 53, pp. 95–104. 

[13] K. Phalp and M. Shepperd, “Quantitative analysis of static models of processes,” Journal of 
Systems and Software, vol. 52, no. 2-3, pp. 105-112, Jun. 2000. 

[14] G. Abeysinghe and K. Phalp, “Combining process modelling methods,” Information and 
Software Technology, vol. 39, no. 2, pp. 107–124, 1997. 

[15] W. M. P. van der Aalst, “Formalization and verification of event-driven process chains,” 
Information and Software Technology, vol. 41, no. 10, pp. 639-650, Jul. 1999. 

[16] C. Menzel and R. J. Mayer, “The IDEF family of languages,” Handbook on architectures of 
information systems, pp. 215–249, 2006. 



57 
 

[17] L. Tsironis, K. Anastasiou, and V. Moustakis, “A framework for BPML assessment and 
improvement: A case study using IDEF0 and eEPC,” Business Process Management Journal, 
vol. 15, no. 3, pp. 430-461, 2009. 

[18] J. Recker, “Opportunities and constraints: the current struggle with BPMN,” Business Process 
Management Journal, vol. 16, no. 1, pp. 181-201, 2010. 

[19] J. Sauve, C. Bartolini, and A. Moura, “Looking at business through a keyhole,” in 2009 
IFIP/IEEE International Symposium on Integrated Network Management-Workshops, 2009, 
pp. 48-51. 

[20] J. Bartenschlager and M. Goeken, “Designing Artifacts of IT Strategy for Achieving Business/IT 
Alignment,” Proceedings of Americas Conference on Information Systems, CA, USA, 2009. 

[21] M. Smits, A. Fairchild, P. Ribbers, K. Milis, and E. Geel, “Assessing strategic alignment to 
improve IT effectiveness,” BLED 2009 Proceedings, p. 15, 2009. 

[22] T. H. Davenport, Process innovation: reengineering work through information technology, 
vol. 11, no. 1. Harvard Business School Press, 1993, p. 337. 

[23] L. Cherbakov, G. Galambos, R. Harishankar, S. Kalyana, and G. Rackham, “Impact of service 
orientation at the business level,” IBM Systems, vol. 44, no. 4, pp. 653-668, 2005. 

[24] R. E. Grandy, “What Are Models and Why Do We Need Them?,” Science & Education, vol. 12, 
no. 8, pp. 773-777, Nov. 2003. 

[25] S. J. B. A. Hoppenbrouwers, H. A. Proper, and T. P. Van Der Weide, “A Fundamental View on 
the Process of Conceptual Modeling,” in Proceedings of the 24th International Conference on 
Conceptual Modeling, 2005, vol. 3716, pp. 128-143. 

[26] Y. Wand and R. Weber, “On the ontological expressiveness of information systems analysis and 
design grammars,” Information Systems Journal, vol. 3, no. 4, pp. 217-237, 1993. 

[27] J. Recker, M. Indulska, M. Rosemann, and P. Green, “The ontological deficiencies of process 
modeling in practice,” European Journal of Information Systems, vol. 19, no. 5, pp. 501-525, 
Jun. 2010. 

[28] B. Wyssusek, “On the foundation of the ontological foundation of conceptual modeling 
grammars: the construction of the Bunge-Wand-Weber ontology,” Proceedings of PHISE, 
2005. 

[29] A. Burton-Jones and P. N. Meso, “Conceptualizing systems for understanding: an empirical test 
of decomposition principles in object-oriented analysis,” Information Systems Research, vol. 
17, no. 1, p. 38, Mar. 2006. 

[30] G. Kiczales, “Towards a New Model of Abstraction in Software Engineering,” in IMSA 92 
Workshop on Reflection and Metalevel Architectures, 1992. 

[31] E. Ernst, “Separation of Concerns,” Computer, 1995. 

[32] K. Phalp, “The CAP framework for business process modelling,” Information and Software 
Technology, vol. 40, no. 13, pp. 731-744, Nov. 1998. 

[33] K. Rayner, S. J. White, R. L. Johnson, and S. P. Liversedge, “Raeding wrods with jubmled 
lettres: there is a cost.,” Psychological science, vol. 17, no. 3, pp. 192-3, Mar. 2006. 



58 
 

[34] J. E. Hopcroft, R. Motwani, and J. D. Ullman, “Introduction to Automata Theory, Languages, 
and Computation (3rd Edition),” Addison Wesley, 2006. 

[35] G. Hirst, Semantic Interpretation and the Resolution of Ambiguity, vol. 34, no. 2. Cambridge 
University Press, 1987, pp. 131-177. 

[36] P. Miller, J. Pane, G. Meter, and S. Vorthmann, “Evolution of Novice Programming 
Environments: The Structure Editors of Carnegie Mellon University,” Interactive Learning 
Environments, vol. 4, no. 2, pp. 140-158, 1994. 

[37] J. Spolsky, “The Law of Leaky Abstractions,” 2002. [Online]. Available: 
http://www.joelonsoftware.com/articles/LeakyAbstractions.html. [Accessed: 03-Jul-2011]. 

[38] H. Hanrahan, Network convergence: services, applications, transport, and operations 
support. Chichester, England: John Wiley & Sons Ltd, 2007. 

[39] I. Vanderfeesten, J. Cardoso, H. A. Reijers, W. M. P. van der Aalst, and J. Mendling, “Quality 
metrics for business process models,” BPM and Workflow, pp. 179-190, 2007. 

[40] V. Gruhn and R. Laue, “Complexity metrics for business process models,” in 9th international 
conference on business information systems, 2006, vol. 85, pp. 1–12. 

[41] A. S. Guceglioglu and O. Demirors, “Using software quality characteristics to measure business 
process quality,” Business Process Management, pp. 374–379, 2005. 

[42] D. Schumm, O. Turetken, and N. Kokash, “Business Process Compliance through Reusable 
Units,” in Proceedings of the 1st Workshop on Engineering SOA and, vol. 6385, no. i, pp. 325–
337. 

[43] E. W. Dijkstra, “On the role of scientific thought,” in Selected Writings on Computing A 
Personal Perspective, no. 447, E. W. Dijkstra, Ed. Springer-Verlag, 1982, pp. 60-66. 

[44] A. Caetano, A. R. Silva, and J. Tribolet, “A method for business process decomposition based on 
the separation of concerns principle,” in Proceedings of the 2010 ACM Symposium on Applied 
Computing, 2010, pp. 79–85. 

[45] T. Elzinga and L. Smiers, “The Common Reference Architecture (CORA) model, Part II,” via-
nova-architectura.org, no. March, pp. 1-4, 2011. 

[46] I. Sommerville and P. Sawyer, Requirements Engineering: A Good Practice Guide. John Wiley 
& Sons, 1997, p. 404. 

[47] R. M. Dijkman and S. M. M. Joosten, Deriving use case diagrams from business process 
models. Citeseer, 2002. 

[48] N. Barnickel, J. Böttcher, and A. Paschke, “Incorporating semantic bridges into information 
flow of cross-organizational business process models,” in Proceedings of the 6th International 
Conference on Semantic Systems, 2010, pp. 1–9. 

[49] C. Ouyang, M. Dumas, A. H. M. ter Hofstede, and W. M. P. van der Aalst, “From BPMN Process 
Models to BPEL Web Services,” 2006 IEEE International Conference on Web Services 
(ICWS’06), pp. 285-292, 2006. 

[50] A. Polyvyanyy, L. García-Bañuelos, and M. Dumas, “Structuring acyclic process models,” 
Business Process Management, pp. 276–293, 2010. 

[51] F. W. Taylor, The principles of scientific management, vol. 6, no. 1. Harper, 1911, p. 144. 



59 
 

[52] J. Becker, P. Delfmann, A. Dreiling, R. Knackstedt, and D. Kuropka, “Configurative Process 
Modeling – Outlining an Approach to increased Configurative Process Modeling – Outlining an 
Approach to increased Business Process Model Usability,” in Proceedings of the 15th IRMA 
International Conference, 2004. 

[53] D. Jagielska, P. Wernick, M. Wood, and S. Bennett, “How natural is natural language?: how 
well do computer science students write use cases?,” in Companion to the 21st ACM SIGPLAN 
symposium on Object-oriented programming systems, languages, and applications, 2006, pp. 
914–924. 

[54] M. Pesic and W. M. P. van der Aalst, “A declarative approach for flexible business processes 
management,” Business Process Management Workshops, pp. 169-180, 2006. 

[55] G. Redding, M. Dumas, A. H. M. Hofstede, and A. Iordachescu, “A flexible, object-centric 
approach for business process modelling,” Service Oriented Computing and Applications, vol. 
4, no. 3, pp. 191-201, Jun. 2010. 

[56] J. Gordijn, H. Akkermans, and H. van Vliet, “Business modelling is not process modelling,” 
Conceptual Modeling for E-Business and the Web, pp. 40–51, 2000. 

[57] D. Fahland, J. Mendling, H. A. Reijers, B. Weber, M. Weidlich, and S. Zugal, “Declarative 
versus Imperative Process Modeling Languages: The Issue of Maintainability,” in Business 
Process Management Workshops, 2010, pp. 477–488. 

[58] J. Recker, N. Safrudin, and M. Rosemann, “How novices model business processes,” Business 
Process Management, pp. 29–44, 2010. 

[59] P. Green and M. Rosemann, “An ontological analysis of integrated process modelling,” in 
Advanced Information Systems Engineering, 1999, pp. 225–240. 

[60] J. Becker, M. Rosemann, and C. V. Uthmann, “Guidelines of business process modeling,” 
Business Process Management, pp. 241–262, 2000.  

 


